Название: Степеневі ряди Теорема Абеля Область збіжності степеневого ряду
Вид работы: реферат
Рубрика: Астрономия
Размер файла: 67.82 Kb
Скачать файл: referat.me-4977.docx
Краткое описание работы: Міністерство освіти і науки України Київський державний торговельно-економічний університет Коломийський економіко-правовий коледж Реферат З дисципліни „Вища математика”
Степеневі ряди Теорема Абеля Область збіжності степеневого ряду
Міністерство освіти і науки України
Київський державний торговельно-економічний університет
Коломийський економіко-правовий коледж
Реферат
З дисципліни „Вища математика”
Розділ : 7 „Ряди ”
Н а тему :
„Степеневі ряди . Теорема Абеля . Область збіжності степеневого ряду”
Виконала :
Студентка групи Б-13
Комар Ірина
Перевірив
Викладач
Лугова Л.Б.
Коломия 2003
План
1. Розвинення функції у степеневий ряд.
Контрольні запитання
1. Яке розвинення в степеневий ряд функції ex .
2. Яке розвинення в степеневий ряд функції sinx.
3. Яке розвинення в степеневий ряд функції cosx.
4. Яке розвинення в степеневий ряд функції ln(1+x).
5. Яке розвинення в степеневий ряд функції arctgx
Література
1. Соколенко О.І. Вища математика: Підручник. – К.: Видавничий центр „Академія”, 2002. – 432с.
Розвинення в степеневі ряди функцій, ex , sinx,cosx
Додатковий член формули Тейлора у формі Лагранжа для функціїf(x)=ex має вигляд
(1)
Нехай R– довільне фіксоване додатне число. Якщо xє (-R; R), то
(2)
Позначивши через , матимемо
(3)
За ознакою Д’Аламбера ряд а1 +а2 +…an +… збіжний, тому . Звідси дістанемо
(4)
для всіх x є (-R;R). Оскільки число Rбуло взято довільно, рівність правильна для всіх Х є
За теоремою Д’Аламбера функція f(x)=ex в інтервалі , який розвивається в степеневий ряд, який для цієї функції має вигляд.
. (5)
Додатковий член формули Тейлора у формі Лагранжа для функції f(x)=sinx має вигляд
(6)
Додатковий член формули Тейлора у формі Лагранжа легко оцінюється зверху:
, (7)
Вище було показано, що для всіх R>0. Тому для всіх х є правильною є рівність
Звідси дістанемо
(8)
для всіх х є .
Функція f(x)=sinx в інтервалі розвивається в степеневий ряд, який для цієї функції має вигляд
. (9)
Аналогічно можна діяти при розвиненні в степеневий ряд функціїf(x)=cosx.Однак простіше скористатись теоремою, згідно з якою степеневий ряд в інтервалі збіжності можна диференціювати почленно. Про диференціювавши почленно попередній ряд, матимемо (10)
Розвинення в степеневий ряд функції ln(1+x). Правильною є рівність
(геометрична прогресія із знаменником, що дорівнює –x).Попередній степеневий ряд можна почленно інтегрувати на проміжку з кінцями 0 таx,де -1 x 1.Виконавши це дістанемо (11)
Оскільки
На підставі двох останніх рівностей знаходимо (12)
Розвинення в степеневий ряд функціїarсtgx.Знаючи, що для х є
(-1;1) правильною є рівність.
(чому це так?),по членним інтегруванням її дістанемо
Оскільки,
остаточно маємо
Приклади
1. Розвинути функцію у степеневий ряд в околиці точки х0 =2.
Виконаємо над заданою функцією тотожні перетворення, такі, щоб під знаком функції одержати вираз (х-2)
Тепер скористаємось формулою (10), ф яку замість х підставимо Тоді
.
Записаний ряд збігається до заданої функції при , тобто при
Таким чином,
2. Розвинути в ряд Макларена функцію
Маємо таке розвинення
Підставивши сюди замість х змінну –х, дістанемо
Віднявши від першої рівності другу, знайдемо
Похожие работы
-
Природні стихії та їх екологічні наслідки
Київський національний торговельно – економічний університет Коломийський економіко –правовий коледж На тему : «Природні стихії та їх екологічні наслідки»
-
Знакозмінні та знакопостійні ряди Абсолютна та умовна збіжність
Знакозмінні та знакопостійні ряди. Абсолютна та умовна збіжність. План. 1. Означення закономірного ряду. 2. Теорема Коші. 3. Абсолютна та умовна збіжність.
-
Числові ряди Збіжність і розбіжність Сума ряду Дії над збіжними рядами Необхідна ознака збіж
Пошукова робота на тему: Числові ряди. Збіжність і розбіжність. Сума ряду. Дії над збіжними рядами. Необхідна ознака збіжності. Гармонічний ряд. Числові ряди. Збіжність і розбіжність
-
Функціональний ряд область його збіжності Cтепеневі ряди Теорема Абеля Інтервал і радіус збі
Пошукова робота на тему: Функціональний ряд, область його збіжності. Cтепеневі ряди. Теорема Абеля. Інтервал і радіус збіжності степеневого ряду. Степеневі ряди за степенями
-
Знакочергуючі ряди Ознака Лейбніца Оцінка залишку ряду Абсолютна і умовна збіжності знакозмін
Пошукова робота на тему: Знакочергуючі ряди. Ознака Лейбніца. Оцінка залишку ряду. Абсолютна і умовна збіжності знакозмінних рядів. Властивості абсолютно збіжних рядів.
-
Властивості степеневих рядів Неперервність суми Інтегрування і диференціювання степеневих ряді
Пошукова робота на тему: Властивості степеневих рядів. Неперервність суми. Інтегрування і диференціювання степеневих рядів. План Властивості степеневих рядів
-
Системи лінійних диференціальних рівнянь із сталими коефіцієнтами Поняття про стійкість розв яз
МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ ТОРГОВЕЛЬНО-ЕКОНОМІЧНИЙ УНІВЕРСИТЕТ КОЛОМИЙСЬКИЙ ЕКОНОМІКО ПРАВОВИЙ КОЛЕДЖ Реферат
-
Опуклість та гнучкість функції Екстремуми функції Необхідна та достатні умови екстремуму Мето
Міністерство освіти і науки України Київський державний торговельно-економічний університет Коломийський економіко-правовий коледж Реферат З дисципліни „Вища математика”
-
Вивчення прийомів штучного дихання і перша допомога потерпілому на воді
Міністерство освіти України Київський державний торговельно-економічний університет Коломийський економіко-правовий коледж Реферат з фізичного виховання
-
Лікувальна фізична культура 4
Міністерство освіти і науки України. Київський державний торгово – економічний університет. Коломийський економіко – правовий коледж. З курсу “Фізичне виховання”