Referat.me

Название: Главные движущие силы эволюции

Вид работы: реферат

Рубрика: Биология

Размер файла: 20.58 Kb

Скачать файл: referat.me-19963.docx

Краткое описание работы: Вопрос 1 Главными движущими силами (факторами) процесса эволюции, по мнению Ч.Дарвина, являются наследственная изменчивость особей, борьба за существование и естественный отбор. В настоящее время исследования в области эволюционной биологии подтвердили справедливость этого утверждения и выявили ряд других факторов, которые играют важную роль в процессе эволюции.

Главные движущие силы эволюции

Вопрос 1

Главными движущими силами (факторами) процесса эволюции, по мнению Ч.Дарвина, являются наследственная изменчивость особей, борьба за существование и естественный отбор. В настоящее время исследования в области эволюционной биологии подтвердили справедливость этого утверждения и выявили ряд других факторов, которые играют важную роль в процессе эволюции.

К мысли о существовании естественного отбора пришли независимо друг от друга и почти одновременно несколько английских натуралистов : В. Уеллс (1813г.), П. Мэтью (1831г.), Э. Блайт (1835, 1837гг.), А. Уоллес (1858г.), Ч. Дарвин (1858, 1859гг.); но только Дарвин сумел вскрыть значение этого явления как главного фактора эволюции и создал теорию естественного отбора. В отличие от проводимого человеком искусственного отбора, естественный отбор обусловливается влиянием на организмы окружающей среды. Согласно Дарвину, естественный отбор - это «переживание наиболее приспособленных» организмов, вследствие которого на основе неопределённой наследственной изменчивости в ряду поколений происходит эволюция.

Естественный отбор - основная движущая сила эволюции, и любой вид живых организмов, когда либо живший на Земле, так или иначе формировался под действием естественного отбора

Эволюционная теория утверждает, что каждый биологический вид целенаправленно развивается и изменяется для того, чтобы наилучшим образом приспособиться к окружающей среде. В процессе эволюции многие виды насекомых и рыб приобрели защитную окраску, еж стал неуязвимым благодаря иглам, человек стал обладателем сложнейшей нервной системы.

Можно сказать, что эволюция - это процесс оптимизации всех живых организмов и основным механизмом эволюции является естественный отбор. Его суть состоит в том, что более приспособленные особи имеют больше возможностей для выживания и размножения и, следовательно, приносят больше потомства, чем плохо приспособленные особи. При этом благодаря передаче генетической информации (генетическому наследованию ) потомки наследуют от родителей основные их качества. Таким образом, потомки сильных индивидуумов также будут относительно хорошо приспособленными, а их доля в общей массе особей будет возрастать. После смены нескольких десятков или сотен поколений средняя приспособленность особей данного вида заметно возрастает.

Естественный отбор происходит автоматически. Все живые организмы из поколения в поколение проходят суровую проверку по всем мельчайшим деталям их строения, функционирования всех их систем в разнообразных условиях. Только те, кто выдержал эту проверку, оказываются отобранными и дают начало следующему поколению. Дарвин писал: «Естественный отбор ежедневно и ежечасно расследует по всему свету мельчайшие вариации, отбрасывая дурные, сохраняя и слагая хорошие, работая неслышно и незаметно, где бы и когда бы, ни представился к тому случай, над усовершенствованием каждого органического существа по отношению к условиям его жизни, органическим и неорганическим. Мы ничего не замечаем в этих медленных переменах в развитии, пока рука времени не отметит истекших веков».

Таким образом, естественный отбор - это единственный фактор, который обеспечивает приспособление всех живых организмов к постоянно меняющимся условиям внешней среды и регулирует гармоничные взаимодействия между генами внутри каждого организма.

Вопрос 2

Любой клетке, как и всякой живой системе, несмотря на непрерывные процессы распада и синтеза, поступления и выделения различных химических соединений, присуща способность сохранять свой состав и все свои свойства на относительно постоянном уровне. Это постоянство сохраняется только в живых клетках, а при их гибели оно нарушается очень быстро.

Высокую устойчивость живых систем нельзя объяснить свойствами материалов, из которых они построены, так как белки, жиры и углеводы обладают незначительной устойчивостью. Устойчивость клеток (как и других живых систем) поддерживается активно в результате сложных процессов саморегуляции или авторегуляции.

Основой регуляции деятельности клетки являются процессы информации, т. е. процессы, в которых связь между отдельными звеньями системы осуществляется с помощью сигналов. Сигналом служит изменение, возникающее в каком-нибудь звене системы. В ответ на сигнал запускается процесс, в результате которого возникшее изменение устраняется. Когда нормальное состояние системы восстановлено - это служит новым сигналом для выключения процесса.

Каким же образом работает сигнальная система клетки, как она обеспечивает процессы авторегуляции в ней? Прием сигналов внутри клетки производится ее ферментами. Ферменты, как и большинство белков, обладают неустойчивой структурой. Под влиянием ряда факторов, в том числе многих химических агентов, структура фермента нарушается и каталитическая активность его утрачивается. Это изменение, как правило, обратимо, т. е. после устранения действующего фактора структура фермента возвращается к норме и его каталитическая функция восстанавливается.

Механизм авторегуляции клетки основан на том, что вещество, содержание которого регулируется, способно к специфическому взаимодействию с порождающим его ферментом. В результате этого взаимодействия структура фермента деформируется и каталитическая активность его утрачивается.

Вопрос 3

Искусственный мутагенез — новый важный источник создания исходного материала в селекции растений. Искусственно вызываемые мутации являются исходным материалом для получения новых сортов растений, микроорганизмов и, реже, животных. Мутации приводят к появлению новых наследственных признаков, из которых селекционеры отбирают те свойства, которые полезны для человека.

В природе мутации наблюдаются относительно редко, поэтому селекционеры широко используют искусственные мутации. Воздействия, повышающие частоту мутаций, называются мутагенными. Частоту мутаций увеличивают ультрафиолетовые и рентгеновские лучи, а также химические вещества, действующие на ДНК или аппарат, обеспечивающий деление.

Значение экспериментального мутагенеза для селекции растений было понято не сразу. Л. Стадлер, первым получивший в 1928 г. искусственные мутации у культурных растений под действием лучей Рентгена, считал, что для практической селекции они не будут иметь никакого значения. Он пришел к выводу, что вероятность экспериментального получения изменений путем мутагенеза, которые превосходили бы формы, имеющиеся в природе, ничтожно мала. Отрицательно относились к мутагенезу и многие другие ученые.

А. А. Сапегин и Л. Н. Делоне были первыми исследователями, показавшими значение искусственных мутаций для селекции растений. В их опытах, проводившихся в 1928—1932 гг. в Одессе и Харькове, была получена серия хозяйственно-полезных мутантных форм у пшеницы. В 1934 г. А. А. Сапегин опубликовал статью «Рентгеномутацни как источник новых форм сельскохозяйственных растений», в которой указывались новые пути создания исходного материала в селекции растений, основанные на использовании ионизирующей радиации.

Но и после этого к применению экспериментального мутагенеза в селекции растений длительное время продолжали относиться отрицательно. Лишь в конце 50-х годов к проблеме использования в селекции экспериментального мутагенеза был проявлен повышенный интерес. Он был связан, во-первых, с крупными успехами ядерной физики и химии, давшими возможность использования для получения мутаций различных источников ионизирующих излучений (ядерные реакторы, ускорители элементарных частиц, радиоактивные изотопы и др.) и высокореактивных химических веществ и, во-вторых, с получением этими методами на самых различных культурах практически ценных наследственных изменений.

Особенно широко работы по экспериментальному мутагенезу в селекции растений развернулись в последние годы. Очень интенсивно они ведутся в Швеции, России, Японии, США, Индии, Чехословакии, Франции и некоторых других странах.

Большую ценность представляют мутации, обладающие устойчивостью к грибным (ржавчине, головне, мучнистой росе, склеротинии) и другим заболеваниям. Создание иммунных сортов — одна из главных задач селекции, и в ее успешном решении большую роль должны сыграть методы радиационного и химического мутагенеза.

С помощью ионизирующих излучений и химических мутагенов можно ликвидировать отдельные недостатки у сортов сельскохозяйственных культур и создавать формы с хозяйственно-полезными признаками: неполегающие, морозостойкие, холодостойкие, скороспелые, с повышенным содержанием белка и клейковины.

Возможны два основных пути селекционного применения искусственных мутаций: 1) прямое использование мутаций, полученных у самых лучших районированных сортов; 2) использование мутаций в процессе гибридизации.

В первом случае ставится задача улучшения существующих сортов по некоторым хозяйственно-биологическим признакам, исправления у них отдельных недостатков. Этот метод считается перспективным в селекции на устойчивость к заболеваниям. Предполагается, что у любого ценного сорта можно быстро получить мутации устойчивости и сохранить нетронутыми при этом другие его хозяйственно-биологические признаки.

Метод прямого использования мутаций рассчитан на быстрое создание исходного материала с нужными признаками и свойствами. Однако прямое и быстрое использование мутаций при тех высоких требованиях, которые предъявляются к современным селекционным сортам, далеко не всегда дает положительные результаты.

К настоящему времени в мире создано более 300 мутантных сортов сельскохозяйственных растений. Некоторые из них имеют существенные преимущества по сравнению с исходными сортами. Ценные мутантные формы пшеницы, кукурузы, сои и других полевых и овощных культур получены в последние годы в научно-исследовательских учреждениях нашей страны.

Вопрос 4

До появления на нашей планете фотосинтезирующих клеток и организмов атмосфера Земли была лишена кислорода. С появлением фотосинтезирующих клеток она стала насыщаться кислородом. Постепенное наполнение атмосферы кислородом привело к появлению клеток с энергетическим аппаратом нового типа. Это были клетки, производящие энергию вследствие окисления органических соединений, главным образом углеводов и жиров, при участии атмосферного кислорода в качестве окислителя.

В результате этого наступил следующий важный этап в развитии жизни на Земле - этап кислородной или аэробной, жизни. Первые клетки, способные использовать энергию солнечного света, возникли, очевидно, около 3 млрд. лет назад. Это были одноклеточные сине-зеленые водоросли. Окаменелые остатки таких клеток были найдены в слоях сланцев, относящихся к тому периоду в истории Земли, который называют архейской эрой. Потребовалось еще более 1 млрд. лет для насыщения атмосферы Земли кислородом и возникновения аэробных клеток.

Благодаря фотосинтетической деятельности первых зеленых организмов в первичной атмосфере Земли появился кислород, возник озоновый экран, создались условия для биологической эволюции.

Очевидно, что планетарная роль растений и иных фотосинтезирующих организмов исключительно велика:

1) они трансформируют энергию солнечного света в энергию химических связей органических соединений, которая используется всеми остальными живыми существами нашей планеты;

2) они насыщают атмосферу Земли кислородом, который служит для окисления органических веществ и извлечения этим способом запасенной в них химической энергии аэробными клетками;

В результате фотосинтеза на Земле образуется 150 млрд. т. органического вещества и выделяется около 200 млрд. т свободного кислорода в год. Фотосинтез создал и поддерживает современный состав атмосферы, необходимый для жизни на Земле. Он препятствует увеличению концентрации CO2 в атмосфере, предотвращая перегрев Земли ( парниковый эффект). Созданная фотосинтезом атмосфера защищает живое от губительного коротковолнового УФ-излучения ( кислородно-озоновый экран атмосферы )

Из всего сказанного следует, что роль зеленых растений в планетарной жизни трудно переоценить. Сохранение и расширение зеленого покрова Земли имеет решающее значение для всех живых существ, населяющих нашу планету.

Похожие работы

  • Теория Дарвина 2

    Содержание Введение Классическая теория Дарвинизма 3 Современная синтетическая теория эволюции 7 Список используемой литературы 11 В в е д е н и е Работу над своей теорией Дарвин начал в 1837, первый её очерк был написан в 1842, после чего Дарвин продолжал собирать и анализировать новые факты. Он опирался на данные палеонтологии, сравнительной анатомии, эмбриологии, систематики, биографии и геологии, широко использовал достижения практики сельского хозяйства, особенно селекции.

  • Эволюционная теория Чарльза Дарвина

    Основные положения учения Ч. Дарвина. Главная заслуге Ч. Дарвина в том, что он совместно с А. Уоллесом объяснил раз­витие природы действием только естественных законов, без вме­шательства сверхъестественных сил. Основные положения его учения раскрывают причины — движущие силы эволюции органи­ческого мира.

  • Основные положения учения Дарвина

    Реферат по биологии тема :"Основные положения учения Дарвина" Красноярск 2000 Содержание: Эволюционные представления до Чарлза Дарвина. 3

  • Движущие силы антропогенеза

    Движущие силы антропогенеза Гребенниковой Марины Человек отличается от животных наличием речи, развитым мышлением, способностью к трудовой деятельности.

  • Чарльз Дарвин – корифей эволюционного учения в биологии

    Обобщение основных предпосылок учения Чарльза Дарвина. Отличительные черты трех периодов развития дарвинизма: романтического, "отрицания", современного синтеза. Главные движущие силы эволюции пород и сортов. Борьба за существование и естественный отбор.

  • Теория Ч. Дарвина

    Чарльз Дарвин в своем основном труде "Происхождение видов путем естественного отбора" (1859), обобщив эмпирический материал современной ему биологии и селекционной практики, использовав результаты собственных наблюдений во время путешествий.

  • Эволюционная теория Ч. Дарвина

    Основные положения эволюционного учения Ч. Дарвина. Целостное учение об историческом развитии органического мира. Основные положения эволюционного учения. Нарастание многообразия видов естественных групп, то есть систематическое дифференцирование видов.

  • Эволюционная теория Ч. Дарвина

    Предпосылки и движущие силы эволюции по Ч.Дарвину. Понятие об изменчивости и ее формах. Определение общей теории эволюции и обстоятельства ее появления. Основные положения эволюционного учения Ч. Дарвина. Основные результаты эволюции по Ч. Дарвину.

  • Эволюционная теория Дарвина

    Предпосылки создания эволюционной теории Ч.Дарвина. Эволюционные исследования Ч.Дарвина. Основные положения эволюционного учения Ч. Дарвина. Предпосылки и движущие силы эволюции по Ч. Дарвину. Основные результаты эволюции (по Ч. Дарвину).

  • Эволюционные факторы

    1. НАСЛЕДСТВЕННОСТЬ — свойство организмов повторять в ряду поколений сходные типы обмена в-в и индивид. развития в целом. Обеспечивается самовоспроизведением материальных единиц Н. - генов, локализованных в специфич. структурах ядра клетки (хромосомах) и цитоплазмы. Вместе с изменчивостью Н. обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.