Название: Виды антиоксидантов полимерных материалов
Вид работы: реферат
Рубрика: Химия
Размер файла: 35.78 Kb
Скачать файл: referat.me-368268.docx
Краткое описание работы: Причины и характер изменения свойств полимеров при их переработке, хранении и эксплуатации. Старение полимеров и основные факторы, на него влияющие. Роль веществ-стабилизаторов в замедлении данных процессов. Типы антиоксидантов и оценка их эффективности.
Виды антиоксидантов полимерных материалов
При переработке, хранении и эксплуатации полимеры подвергаются действию тепла, света, кислорода, механических нагрузок и другим воздействиям. В результате этого меняются свойства полимеров: уменьшается механическая прочность, эластичность, возникает хрупкость, изменяется цвет, гладкая поверхность становится шероховатой и т.д. Изменения свойств полимеров, которые приводят к ухудшению качества и сокращению срока службы изделий, называют старением. Старение можно предотвратить введением в полимеры небольших количеств химических веществ ― стабилизаторов. При их введении повышается стойкость полимера к внешним воздействиям, расширяются области применения изделий из полимеров и увеличиваются сроки их эксплуатации [1].
По защитному действию в полимерах стабилизаторы условно делятся на несколько классов, важнейшим из которых является класс антиоксидантов. Антиоксиданты защищают полимеры от разрушения под действием тепла и кислорода. Они подразделяются на две большие группы: первичные (защищают готовое изделие в течение всего срока службы) и вторичные (защищают полимер в процессе переработки в изделие) [3].
К первой группе антиоксидантов относят замещённые фенолы и вторичные ароматические амины.
По химическому строению фенольные стабилизаторы можно разделить на производные моноядерных фенолов, бисфенолов и трисфенолов. Важнейшим представителем моноядерных фенолов является 4-метил – 2,6 – дитретбулфенол. Торговое название его ― алкафен БП (или ионол):
 ОН
ОН
|  | 
 (СН3
)3
С― ―С(СН3
)3
(СН3
)3
С― ―С(СН3
)3
|  | |
|  | |
СН3
 Его получают при алкилировании n-крезола изобутиленом в присутствии кислых катализаторов: ОН
Его получают при алкилировании n-крезола изобутиленом в присутствии кислых катализаторов: ОН


 ОН
ОН





 (СН3
)3
С С(СН3
)3
(СН3
)3
С С(СН3
)3

 + 2 (СН3
)2
СН=СН2
→
+ 2 (СН3
)2
СН=СН2
→
|  |  | 
СН3 СН3
Этот процесс происходит следующим образом: расплавленный n-крезол и концентрированную серную кислоту (4% от массы n-крезола) загружают в специальный реактор. В реакторе смесь нагревают до 90 0 С и при этой же температуре пропускают изобутилен. Для того чтобы изобутилен успел почти полностью вступить в реакцию, скорость его подачи регулируют. После этого массу веществ, вступивших в реакцию, нейтрализуют содой. Затем органический слой отделяют, промывают водой и разделяют смеси при остаточном давлении 20 мм ртутного столба. Сначала отгоняют не вступивший в реакцию n-крезол, затем 4-метил – 2,6 – дитретбулфенол, и, наконец, ионол.
Этот стабилизатор практически не влияет на цвет полимера, благодаря чему и используется для защиты очень многих изделий из полимера. Также его применяют для защиты моторных топлив, масел и других нефтепродуктов [4].
В группе бисфенолов важнейшим стабилизатором является 2,2’ –метилен – бис ― высокоэффективный стабилизатор для каучуков, резин, пластмасс, известный под торговым названием бисалкофен БП или антиоксидант 2246:



 ОН ОН
ОН ОН







 (СН3
)3
С СН2 
С(СН3
)3
(СН3
)3
С СН2 
С(СН3
)3
|  |  | |
|  |  | |
СН3 СН3
Он образуется при конденсации 4-метил-2-третбутилфенола с формальдегидом в присутствии кислотных катализаторов.
Синтез идёт по схеме:


 ОН ОН ОН
ОН ОН ОН













 2 (СН3
)3
С (СН3
)3
С СН2 
С (СН3
)3
2 (СН3
)3
С (СН3
)3
С СН2 
С (СН3
)3


 + СН2
О →
+ СН2
О →
|  | 
|  | 
|  | 
СН3 СН3 СН3
Этот процесс происходит следующим образом: в стальной аппарат загружают горячую воду, расплавленный 4-метил-6-третбутилфенол, серную кислоту и эмульсию сульфанола в бензине (для получения хорошо фильтрующихся кристаллов стабилизатора). Полученную массу, перемешивая, нагревают до 80―85 0 С. К ней добавляют формалин, после чего начинают выпадать кристаллы стабилизатора. После добавления формалина массу размешивают 2 часа при температуре 80―85 0 С, затем охлаждают до 60―65 0 С, а серную кислоту нейтрализуют. Полученный продукт отфильтровывают, промывают водой и сушат в вакуум-сушилке.
Один из важнейших стабилизаторов группы трисфенолов ― 2,4,6 – трис (3,5 – дитретбутилен-4-оксибензил) мезитилен ― высокоэффективный нелетучий и неокрашивающий стабилизатор полиолефинов и других полимеров, известный под торговым названием стабилизатор АО-40:
|  | 
|  | 





 НО ОН
НО ОН








 СН3
СН3




 Н2
С
Н2
С  СН2
СН2
|  |  |  | 
 Н3
С СН3
Н3
С СН3
 СН2
СН2
|  | 
СН3
где + = С(СН3 )3 [1], стр. 164. Получают его следующим способом: хлористый метилен (0―100 С), мезитилен и 3,5 – дитретбутил-4-оксибензиловый спирт загружают в реактор. Полученную массу охлаждают. Не давая температуре массы подняться выше 100 С, добавляют концентрированную серную кислоту. После этого массу размешивают в течение 1,5―2 часов, а затем нейтрализуют. Отделяют водный слой. Затем из раствора стабилизатора отгоняют хлористый метилен. При этом стабилизатор выпадает в осадок и его отфильтровывают, промывают метиловым спиртом и сушат.
Фенольные антиоксиданты обладают рядом преимуществ: высокоэффективны, не летучи, а также их можно применять с пищевыми и косметическими продуктами.
К группе вторичных ароматических аминов относят ряд важных стабилизаторов, которые эффективно защищают от старения синтетические каучуки, резины, пластмассы и химические волокна. Их применяют в основном в изделиях, окрашенных в тёмные цвета, т. к. они могут вызывать изменение цвета изделия [4].




 Одним из важнейших стабилизаторов ароматических аминов является фенил-2-нафтиламин, образующийся при взаимодействии анилина с 2-нафтолом и известный под торговым названием неозон Д:
Одним из важнейших стабилизаторов ароматических аминов является фенил-2-нафтиламин, образующийся при взаимодействии анилина с 2-нафтолом и известный под торговым названием неозон Д:





 NH
NH
|  |  | 
 Армирование 2-нафтола анилином ведут в присутствии соляной кислоты, которую вводят в форме анилиновой соли С6
Н5
NН2
·НСL. Реакция протекает по схеме:
Армирование 2-нафтола анилином ведут в присутствии соляной кислоты, которую вводят в форме анилиновой соли С6
Н5
NН2
·НСL. Реакция протекает по схеме:
NH2






















 ОН C6
H5
NH2
·HClNH
ОН C6
H5
NH2
·HClNH


 + + H2
O
+ + H2
O
Этот процесс происходит следующим образом: готовят смесь анилина и 2-нафтола, которую загружают в реактор и добавляют небольшое количество солянокислого анилина. Всё это размешивают и нагревают. Реактор оборудован двумя последовательно соединёнными холодильниками ― прямым и обратным. Обратный холодильник охлаждается горячей водой. Сначала в него поступают пары воды и анилина. Через обратный холодильник анилин стекает в реактор, а вода поступает в прямой холодильник, а затем в приёмник. Таким образом, удаляется вода из реакционной массы. Затем температуру реакционной массы постепенно повышают до 250―2600 С. По окончании реакции для нейтрализации кислоты добавляют щёлочь и убирают избыточный анилин. После этого расплавленный неозон Д чистят и кристаллизуют.
К вторичным антиоксидантам относят органические соединения трёхвалентного фосфора (фосфиты и фосфониты), металлические соли дитиокарбаматов и дитиосульфатов и тиоэфиры. Они взаимодействуют с гидропероксидами и разрушают их без образования активных радикалов. Образующиеся продукты должны обладать очень низкой реакционной способностью и высокой термической стабильностью [2].
Наиболее эффективными в группе вторичных антиоксидантов являются фосфиты и фосфониты. Они прекрасно подходят для защиты полимеров в процессе переработки в изделие. Однако их недостатком является чувствительность к гидролитической деструкции, которая приводит к образованию кислых соединений, вызывающих коррозию перерабатывающего оборудования.
Защитное действие антиоксидантов этой группы, которое характеризуется величиной индукционного периода на кривой поглощения кислорода при заданной температуре, зависит от количества примененного антиоксиданта [3].

Рисунок 1. Зависимость величины индукционного периода окисления полимеров от концентрации ингибитора окисления (указаны критическая и оптимальная концентрации ингибитора)
Таким образом, исходя из рисунка, можно говорить о том, что в полимере существует критическая концентрация, ниже которой защитное действие не проявляется, и оптимальная концентрация, при которой индукционный период имеет наибольшую длину. Антиоксиданты этой группы обычно не влияют на длину индукционного периода, но сильно снижают скорость присоединения кислорода к полимеру в главном периоде процесса.
Список использованной литературы
1. Химия и технология промежуточных продуктов, органических красителей и химикатов для полимерных материалов: учеб. пособие для сред. проф. ― техн. училищ/ Я.А. Гурвич, С.Т. Кумок. ― Изд. 2-е, перераб. и доп. ― Москва: Высш. шк., 1974. ― 327 с.
2. Интернет ресурсы: http://junker-mk.com/articles/p-684.html
3. Интернет ресурсы: http://softacademy.lnpu.edu.ua/Programs/fizika_polimerov/Theme % 202/Section % 207.htm
4. Интернет ресурсы: http://www.polymery.ru/letter.php? n_id=3773&cat_id=&page_id=1
Похожие работы
- 
							Модифицирование ПАН волокна с целью снижения горючести
							Одним из критериев, определяющих возможность применения полимеров во многих отраслях промышленности, является их горючесть. Проблема снижения их пожарной опасности является одной из важнейших научных и практических задач. Это подтверждается принятием в Российской Федерации закона «О пожарной безопасности». 
- 
							Несимметричные сульфиды
							Отдел образования администрации Центрального района Муниципальная гимназия № 1 реферат По теме: несимметричные сульфиды на основе 4 - (  - хлорпропил ) - 2 - трет. - бутилфенола 
- 
							Полистирол и ударопрочный полистирол
							1.Характеристика исходного вещества Полистирол и ударопрочный полистирол получают полимеризацией стирола в массе. Стирол(винилбензол, фенилэтилен), 
- 
							Классификация химических средств уборки
							Классификация химических средств уборки Современные химические средства для уборки чаще всего классифицируют по их назначению: моющие средства, чистящие средства, дезинфицирующие средства, средства для ухода за мебелью, ковровыми покрытиями и т.п. Все химические препараты различаются также по своему составу, следовательно - по степени оказываемой на людей опасности, при их неквалифицированном использовании. 
- 
							Получение флокулянтов из отходов кубовых остатков фурановых соединений и производства полиакрилонитрильного волокна
							Из многих систем, изучаемых коллоидной химией, наибольший интерес в теоретическом и практическом отношении представляют водорастворимые полимеры. Изучение их взаимодействий с дисперсными системами, носящими различный характер в зависимости от их природы. 
- 
							Модификация вторичных полимеров для изготовления изделий различного функционального назначения
							Выбор эффективных модификаторов вторичных термопластов для повышения комплекса свойств изделий, полученных на их основе. Влияние вида и количества модификаторов на свойства вторичных термопластов. Взаимосвязь структуры и свойств во вторичных полимерах. 
- 
							Исследование взаимодействия в системах нитраты целлюлозы – уретановые каучуки
							Анализ возникновения межмолекулярных водородных связей между функциональными группами нитрат целлюлозы и уретановых каучуков, которые приводят к получению оптимальной структуры совмещенной композиции с высоким уровнем физико-механических характеристик. 
- 
							Химия
							Вопросы Гомологические ряды Алканы Алкены Алкины Общее понятие Общая формула 2n+2 2n-2 Тип гибридизации Число сигма связей 4.Наличие других видов связи 
- 
							Ферментоподобные полимеры
							Гидролиз сложных эфиров в присутствии имидазола. Полимерные катализаторы реакции гидролиза п-нитрофенилацетата. Общие направления имитации энзимов синтетическими полимерами. Каталитические свойства полимеров. Синтез полимеров. Экспериментальные данные. 
- 
							Технология модификации вискозных волокон производными диметилметил-фосфоната с целью получения волокон пониженной горючести
							Замедлители горения (ЗГ) - наиболее распространенный и эффективный способ снижения горючести полимерных материалов. Обоснование выбора ЗГ для вискозных волокон, разработка параметров модификации. Кинетика сорбции замедлителей горения вискозным волокном.