Название: Физико-топологическая модель интегрального биполярного п-р-п-транзистора
Вид работы: реферат
Рубрика: Коммуникации и связь
Размер файла: 99.88 Kb
Скачать файл: referat.me-168080.docx
Краткое описание работы: Физико-топологическая модель как модель расчета электрических параметров. Расчет распределения концентрации акцепторной и донорной примеси, скорости диффузии, расчет остальных параметров биполярного транзистора. Определение напряжения лавинного пробоя.
Физико-топологическая модель интегрального биполярного п-р-п-транзистора
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
КАФЕДРА РЭС
РЕФЕРАТ
НА ТЕМУ:
ФИЗИКО-ТОПОЛОГИЧЕСКАЯ МОДЕЛЬ ИНТЕГРАЛЬНОГО БИПОЛЯРНОГО п-р-п-ТРАНЗИСТОРА
МИНСК, 2009
Физико-топологическая модель — модель расчета электрических параметров, исходными параметрами которой являются электрофизические характеристики полупроводниковой структуры и топологические размеры транзистора (см. рис.1). Электрофизические характеристики: концентрация собственных носителей заряда, ширина запрещенной зоны и диэлектрическая проницаемость полупроводника, времена жизни, тепловые скорости, концентрации и сечения ловушек захвата, подвижности, коэффициенты диффузии и концентрации примесных электронов и дырок. Многие из этих параметров зависят от профиля легирования (распределения концентрации легирующих примесей вглубь) транзисторной структуры.
Топологические размеры: длина эмиттера Lэ ; ширина эмиттера Zэ ; расстояния от базового контакта до края базы dбб .
Параметры профиля легирования (см. рис. 1,в): концентрация донорной примеси в эпитаксиальном коллекторном слое Nдк , глубины залегания р-п-переходов коллектор-база хк и эмиттер-база хэ , концентрации акцепторной примеси на поверхности базы Nan и донорной примеси на поверхности эмиттера Nд n , толщина эпитаксиальной пленки WЭП .
Распределение концентрации акцепторной примеси при формировании базы путем двухстадийной диффузии находится из выражения
(1)
где t1 a и t2 a — время "загонки" и "разгонки" акцепторной примеси;
D1 a и D2 a — коэффициенты диффузии акцепторной примеси при "загонке" и "разгонке".
Рис. 1. Разрез структуры и топология БТ: а - структура БТ; б - эскиз топологии БТ;в - параметры профиля легирования БТ
Распределение концентрации донорной примеси при формировании эмиттера путем одностадийной диффузии рассчитывается по формуле
(2)
где Dд и tд — коэффициент и время диффузии донорной примеси.
Коэффициент диффузии определяется выражением
D = Do exp(∆E/KT), (3)
где Do — постоянная коэффициента диффузии примеси;
∆E— энергия активации примеси;
К — постоянная Больцмана;
Т — абсолютная температура диффузии примеси.
Согласно (1) и (2) для расчета концентрации на любой глубине х транзисторной структуры необходимо знать значения времени диффузии t2 a и tд (t1 a задается), которые определяются при решении уравнений
Na ( xк , t ) = Nдк , (4)
Nд ( xэ , t ) = N.( xэ , t2 а ). (5)
Уравнения (4) и (5) являются условиями образования p-n-перехода. При решении этих уравнений относительно t2 a и tд величины Na п , Nд n , Nдк , хэ , хк являются исходными параметрами модели и задаются разработчиком.
Интегральные БТ работают при малых токах коллектора Iк (1... 1000 мкА).
При таких токах коллектора статический коэффициент передачи тока в схеме с общим эмиттером может быть рассчитан по формуле
(6)
где Iби — составляющая тока базы, обусловленная инжекцией дырок из базы в эмиттер;
Iбп и Iб р-п — составляющие тока базы, обусловленные рекомбинацией на поверхности пассивной базы и в области пространственного заряда (ОПЗ) р-п-перехода база-эмиттер.
Для БТ, включенного по схеме с общим эмиттером (ОЭ), соблюдается следующее соотношение между токами эмиттера Iэ , коллектора Iк и базы Iб :
(7)
Для типичных значений Вст > 20 можно с погрешностью менее пяти процентов записать Iз = Iк .
Ток Iэ обусловлен движением электронов, инжектированных из эмиттера в базу от эмиттерного к коллекторному p-n-переходу. Движение электронов по базе обусловлено двумя механизмами: диффузией и дрейфом. Диффузия электронов происходит из-за возникновения градиента электронов в результате увеличения их концентрации у эмиттерного края базы вследствие инжекции. Дрейф (движение под действием электрического поля) электронов по базе обусловлен наличием в ней ускоряющего поля, образующегося в неравномерно легированной (диффузионной базе) в результате диффузии дырок от эмиттерного к коллекторному краю базы. Возникает это поле в части базы, расположенной под эмиттером. На основании изложенного ток эмиттера может быть рассчитан по формуле
, (8)
где q— заряд электрона;
μп (х) — подвижность электронов в базе;
Е(х) — напряженность поля в базе;
п(х) — концентрация электронов в базе;
Dn (x) — коэффициент диффузии электронов в базе;
dn(x)/dx — градиент электронов в базе.
Концентрация инжектированных электронов описывается выражением
(9)
где про (х) — равновесная концентрация (при Uэб = 0) электронов в точке (см. рис. 1,в), которая определяется соотношением
(10)
где ni , - концентрация собственных носителей зарядов в кремнии.
Согласно (9) и (10) при уменьшении концентрации |Na (xэ ")-Nд (xэ ")| увеличивается концентрация инжектированных электронов в базу. Из чего следует, что инжекция электронов в данной части эмиттера будет больше, чем в базовой. Кроме того, в базе под эмиттером имеет место ускоряющее попе. Следовательно, наибольший ток эмиттера протекает через дно эмиттерной области и часть базы, расположенной под ней. Поэтому базу под эмиттером называют "активной", а окружающую эмиттер - "пассивной".
Подвижность μп (х) и коэффициент диффузии Dn (x) растут с уменьшением концентрации легирующей примеси в базе (благодаря уменьшению столкновений с ионами легирующей примеси).
Напряженность поля Е(х) равна
(11)
где φТ = k∙T/q — температурный потенциал,
W'б = х'к - хэ " — толщина квазинейтральной базы (см. рис.1,в).
Из выражения (11) следует, что Е(х) увеличивается при уменьшении концентрации Nк и координаты х'к .
Границы областей пространственного заряда (ОПЗ) р-п-переходов, определяющие толщину квазинейтральной базы, рассчитываются следующим образом.
Переход база-эмиттер можно считать плавным и ширина его ОПЗ равна
(12)
где α(xэ )=dn(xэ )/dx— градиент распределения концентрации легирующих примесей в ОПЗ, снижающийся при их уменьшении;
εεо — диэлектрическая проницаемость кремния;
фкз — потенциальный барьер p-n-перехода база-эмиттер.
Потенциальный барьер p-n-перехода база-эмиттер рассчитывается по формуле
(13)
Ширина ОПЗ p-n-перехода коллектор-база
(14)
где — характеристическая длина в распределении акцепторов в базе;
фкк и Uкб — потенциальный барьер и напряжение на р-п-переходе коллектор-база.
Потенциальный барьер p-n-перехода коллектор-база находится из выражения
(15)
Из соотношений (12)...(15) следует, что ширина p-n-переходов база-эмиттер и коллектор-база увеличивается при уменьшении концентрации легирующих примесей в них, в частности при уменьшении Na (xэ ) и Nдк .
Напряжение Uкб при включении БТ по схеме с ОЭ определяется из соотношения
(16)
где Uкэ — напряжение питания коллектора в схеме с ОЭ;
Rк — сопротивление области коллектора, по которой течет ток Iк .Граница ОПЗ p-n-перехода коллектор-база в базе х'к равна
(17)
Сопротивление области коллектора в соответствии с рис. 1,а определяется выражением (при этом сопротивление скрытой коллекторной области n+ -типа и подконтактной области n+ -типа не учитываются)
(18)
Градиент dn/dxможно найти из соотношения
(19)
или в соответствии с выражениями (9) и (10):
(20)
С учетом (10), (11) и (20) выражение (8) можно преобразовать к следующему виду:
(21)
где ‑ начальное (при Uбэ
= 0) значение тока эмиттера.
Инжекционная составляющая тока базы Iби согласно (1) определяется выражением
(22)
где — начальное значение тока;
— равновесная концентрация дырок в эмиттере;
— напряженность тормозящего поля в эмиттере, образующегося в результате диффузии электронов от поверхности к р-п-переходу эмиттер-база;
— время жизни инжектированных дырок в эмиттере.
Рекомбинационная составляющая тока базы Iбп согласно (1) описывается выражением
(23)
где — начальное значение тока;
q— концентрация ловушек захвата электронов и дырок;
Sn , Sp — сечения ловушек захвата электронов и дырок;
Vtn , Vtp — тепловые скорости электронов и дырок;
Dп пов — коэффициент диффузии электронов на поверхности пассивной базы;
τп пов — время жизни электронов на поверхности пассивной базы;
Рэ — периметр эмиттера.
Параметры Nt , Sn , Sp , Vtn , Vtp не зависят от топологических размеров и профиля легирования. Коэффициент Dп пов и время τп пов слабо зависят от концентрации акцепторов на поверхности. Кроме того, следует заметить, что ток Iбр в отличие от других составляющих тока базы пропорционален не площади, а периметру эмиттера. Последнее обстоятельство необходимо учитывать при анализе зависимости коэффициента передачи тока от топологических размеров эмиттера.
Рекомбинационная составляющая тока базы Iбр-п согласно (1) находится из выражения
(24)
где — времена жизни электронов и дырок в ОПЗ р-п-перехода эмиттер-база.
Времена τпо и τро уменьшаются с ростом концентрации легирующих примесей в ОПЗ.
На рис.2 приведены графики зависимостей всех рассмотренных токов от напряжения Uбэ , построенные для типичных значений электрофизических параметров (1), определяющих значения этих токов.
Рис. 2. Графики зависимостей:
а ‑ токов Iк , Iби , 1б n , 1б p - n , от напряжения Uбэ ;
б ‑ коэффициента передачи тока от коллектора
Следует отметить, что рекомбинационные токи слабее зависят от напряжения база-эмиттер, что учитывается коэффициентом два в знаменателе экспоненциальных множителей выражений (23) и (24).
С учетом (6) и графиков, приведенных на рис.2,а, можно построить график зависимости Вст (Iк ), представленный на рис.2,б.
Сильная зависимость коэффициента передачи тока от тока коллектора имеет место в диапазоне рабочих токов коллектора БТ. Поэтому при проведении исследований зависимости коэффициента Вст (Iк ) от конструктивно-технологических параметров необходимо поддерживать ток Iк постоянным, что обеспечивается соответствующим изменением напряжения прямого смещения на p-n-переходе база эмиттер Uбэ . Напряжение Uбэ , обеспечивающее заданный ток Iк , с учетом принятого ранее допущения Iэ = Iк и соотношения (21) может быть рассчитано по формуле
(25)
Из выражения (25) следует, что при увеличении Iэо , которое может произойти при изменении конструктивно-технологических параметров БТ (при проведении соответствующих исследований), напряжение Uбэ .уменьшится, что приведет к уменьшению составляющих тока базы.
Граничная частота усиления БТ согласно (1) определяется выражением
, (26)
где - постоянная цепи заряда барьерной емкости p-n-p-перехода база-эмиттер Сбэ
;
- время пролета через квазинейтральную базу;
- постоянная цепи заряда барьерной емкости p-n-p перехода коллектор-база Скб.
Барьерная емкость Сбэ , состоит из двух параллельно включенных емкостей донной и боковой частей p-n-перехода база-эмиттер:
Сбэ = Сбэдон + Сбэбок , (27)
где Сбэдон =εε0 ·zэ ·Lэ/lбэ (xэ ) – емкость донной части p-n-перехода база-эмиттер;
Сбэбок
= - емкость боковой части p-n-перехода база-эмиттер;
Поскольку ширина ОПЗ зависит от концентрации легирующей примеси в p-n-переходе, а она в боковой части p-n-перехода изменяется по глубине, то Сбэбок также зависит от глубины и с учетом двухмерного распределения донорной примеси может быть определена из выражения
, (28)
где Nд
(х,у) = Ndn
·erfc[(х+1,5у)/2] — двухмерное распределение донорной (эмиттерной) примеси;
φкэбок (х) — контактная разность потенциалов боковой части р-n-перехода база-эмиттер(зависит от глубины по той же причине, что и ширина lбэбок .).
Сопротивление базы Rб можно представить состоящим из двух последовательно включенных сопротивлений активной и пассивной базы, по которым протекает ток базы от соответствующего вывода до р-n-перехода эмиттер-база:
Rб =Rба +Rбпас, (29)
где— сопротивление активной части базы;
— сопротивление пассивной части базы.
Барьерная емкость Скб : по аналогии с емкостью Сбэ также состоит из двух параллельно включенных емкостей донной и боковой частей р-п-перехода коллектор-база:
Скб =εε0 (Sкбдон +Sкббок ), (30)
где Sкбдон и Sкббок — площади донной и боковой частей р-n-перехода коллектор-база. Поскольку коллектором является равномерно легированный эпитаксиальный слой, то концентрации легирующей примеси в боковой и донной частях этого р-n-перехода одинакова, а значит, и постоянна толщина ОПЗ lкб
Напряжения лавинного пробоя плавного р-п-перехода база-эмиттер:
и резкого р-п-перехода коллектор-база:
Литература
1. Новиков Ю.В. Основы цифровой схемотехники. Базовые элементы и схемы. Методы проектирования. М.: Мир, 2001. - 379 с.
2. Новиков Ю.В., Скоробогатов П.К. Основы микропроцессорной техники. Курс лекций. М.: ИНТУИТ.РУ, 2003. - 440 с.
3. Пухальский Г.И., Новосельцева Т.Я. Цифровые устройства: Учеб. пособие для ВТУЗов. СПб.: Политехника, 2006. - 885 с.
4. Преснухин Л.Н., Воробьев Н.В., Шишкевич А.А. Расчет элементов цифровых устройств. М.: Высш. шк., 2001. - 526 с.
5. Букреев И.Н., Горячев В.И., Мансуров Б.М. Микроэлектронные схемы цифровых устройств. М.: Радио и связь, 2000. - 416 с.
6. Соломатин Н.М. Логические элементы ЭВМ. М.: Высш. шк., 2000. - 160 с.
Похожие работы
-
Расчёт и проектирование маломощных биполярных транзисторов
Саратовский Государственный Технический Университет Кафедра «Электронные приборы и устройства» Курсовая работа На тему: «Расчёт и проектирование маломощных биполярных транзисторов»
-
Расчет параметров структуры интегрального n-p-n транзистора и определение технологических режимов его изготовления
Рассмотрение синтеза структуры транзистора с использованием расчетных соотношений и параметров материалов, применяемых в производстве. Расчет кремниевых эпитаксиально-планарных транзисторов, их конструктивные и технико-эксплуатационные характеристики.
-
Расчет параметров и режимов работы транзисторных каскадов усилителя низкой частоты
Расчёт параметров усилителя низкой частоты на биполярном транзисторе. Схема транзисторного усилителя низкой частоты. Выбор биполярного транзистора, расчет элементов схемы. Аналитический расчёт параметров усилительного каскада на полевом транзисторе.
-
Конструктивно-технологические варианты исполнения биполярного и полевого транзисторов в одном кристалле. Инжекционно-полевая логика
Принцип работы полевого транзистора. Методы обеспечения большого коэффициента передачи тока. Функционально-интегрированные биполярно-полевые структуры. Структура и эквивалентная электрическая схема элемента инжекционно-полевой логики с диодами Шотки.
-
Исследование биполярного транзистора
Исследование статических характеристик биполярного транзистора. Наружная область с наибольшей концентрацией примеси. Схема подключения к источникам питания. Дифференциальное входное сопротивление. Дифференциальное сопротивление перехода база-эмиттер.
-
Моделирование работы МДП-транзистора в системе MathCad
Построение и обоснование компьютерной модели поведения обедненной области пространственного заряда МДП-транзистора в зависимости от напряжения, приложенного к стоку. Изучение классификации и принципа действия полевых транзисторов с индуцированным каналом.
-
Интегрированные устройства радиоэлектроники
Описание процесса термического окисления, цели его проведения и применяемое оборудование. Краткая характеристика и общее строение интегральной микросхемы. Последовательность формирования изолированных областей в изопланарной структуре транзистора.
-
Физические основы полупроводниковых приборов
Полупроводниковые материалы, изготовление полупроводниковых приборов. Переход электрона из валентной зоны в зону проводимости. Незаполненная электронная связь в кристаллической решетке полупроводника. Носители зарядов, внешнее электрическое поле.
-
Модель биполярного транзистора
Модель Эберса-Молла и Гуммеля-Пуна, основанные на суперпозиции нормального и инверсного биполярного транзистора и токовых режимов его работы при инжекции из коллектора. Генераторы тока и их неидеальность в зарядовой модели, резисторные конфликты.
-
Модели полупроводниковых диодов
Физические модели p-n переходов в равновесном состоянии и при электрическом смещении. Влияние процессов генерации-рекомбинации на вид ВАХ для PSPICE модели полупроводникового диода, связь концентрации и температуры с равновесной барьерной емкостью.