Referat.me

Название: Изучение принципа действия стабилитрона, освоение методики расчета схемы параметрического стабилизатора напряжения

Вид работы: лабораторная работа

Рубрика: Коммуникации и связь

Размер файла: 25.79 Kb

Скачать файл: referat.me-168487.docx

Краткое описание работы: Вольтамперная характеристика полупроводникового стабилитрона. Параметрические стабилизаторы напряжения. Соотношения токов и напряжений. Относительное приращение напряжения на выходе стабилизатора. Температурный коэффициент напряжения стабилизации.

Изучение принципа действия стабилитрона, освоение методики расчета схемы параметрического стабилизатора напряжения

Дон ГТУ

Лабораторная работа №1

АКГ

АУТПТЭК


Цель работы: изучение принципа действия стабилитрона, освоение методики расчета схемы параметрического стабилизатора напряжения.


1 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1.1 Кремниевые стабилитроны

Стабилитрон — полупроводниковый диод, напряжение на котором в области электрического пробоя при обратном смешении слабо зависит от тока в заданном его диапазоне. Стабилитроны предназначены для стабилизации напряжения.

В полупроводниковых стабилитронах используется свойство незначительного изменения обратного напряжения на р-n - переходе при электрическом (лавинном или туннельном) пробое рис. 1.1. Это связано с тем, что небольшое увеличение напряжения на р-n - переходе в режиме электрического пробоя вызывает более интенсивную генерацию носителей заряда и увеличение обратного тока. Участок 1-2 рис. 1.1 является рабочим участком вольтамперной характеристики.

Рисунок 1.1 – Вольтамперная характеристика полупроводникового стабилитрона.

Основным параметром стабилитрона является напряжение стабилизации Ucт, равное напряжению пробоя. Шкала напряжений у промышленных стабилитронов лежит в пределах 3—180 В.

Точка 1 на характеристике соответствует минимальному току стабилитрона 1ст.min , при котором наступает пробой. Точке 2 соответствует максимальный ток стабилитрона Iст.max, достижение которого еще не грозит тепловым пробоем р- n- перехода. Iст.max ограничивается величиной максимальной мощности рассеяния Рmax.

Параметром, характеризующим наклон рабочего участка характеристики, является динамическое сопротивление стабилитрона Показателем зависимости напряжения стабилизации от температуры служит температурный коэффициент напряжения стабилизации (ТКН) Он определяет изменение напряжения стабилизации при изменение температуры окружающей среды на 1°С, выраженное в процентах. Для кремниевых стабилитронов ТКН может быть положительным и отрицательным. При туннельном характере пробоя ТКН имеет положительный знак, а при лавинном — отрицательный знак. Для уменьшения ТКН последовательно со стабилитроном включают полупроводниковые диоды, имеющие противоположный знак ТКН.

Полупроводниковые стабилитроны применяются в основном в стабилизаторах напряжения.

1.2 Параметрические стабилизаторы напряжения

Существуют два типа стабилизаторов напряжения: параметрические и компенсационные. В параметрических стабилизаторах используется постоянство напряжения стабилитрона при изменении протекающего по нему току. Схема параметрического стабилизатора приведена на рис. 1.2 Она состоит из балластного резистора RБ и стабилитрона VD. Нагрузка подключается параллельно стабилитрону.

Дестабилизирующими факторами схемы являются изменения напряжения источника питания Е изменения сопротивления Rн (тока IН ) нагрузки.

Приведем основные соотношения, необходимые для расчета параметров стабилизатора.

Главным при расчете стабилизатора является выбор типа стабилитрона на напряжение нагрузки Ucт=Uн и обеспечение условий его работы, при которых изменяющийся в процессе работы ток стабилитрона Iст не выходил бы за пределы рабочего участка, т. е. не был меньше Icт.min и больше Iст.мах рис. 1.1.

Основные соотношения токов и напряжений ползаем, воспользовавшись первым и вторым законом Кирхгофа:

(1.1)

(1.2)

где

Из этих соотношений ток стабилитрона определяется выражением:

Напряжение Uн, определяемое напряжением Ucт, изменяется незначительно, в связи с чем его можно считать неизменным. Тогда при изменении тока нагрузки (сопротивления Rn) и напряжения Е ток Iст будет изменяться от некоторого минимального до максимального значения. Минимальному значению тока стабилитрона будет соответствовать минимальные значения Еmax и Rmin, а максимальному значению тока стабилитрона — максимальные значения Емах и Rmax. Расчет стабилизатора сводится к тому, чтобы выбрать величину сопротивления RБ, при которой через стабилитрон протекал бы ток Ict.min. соответствующий началу его рабочей характеристики. Балластное сопротивление определяется выражением

(1.4)

Ток , протекающий через стабилитрон в процессе работы схемы, учитывают выбором типа прибора по току, исходя из того, чтобы этот ток не превышал максимально допустимого значения, указанного в справочнике. Максимальные мощности, рассеиваемые на стабилитроне и резисторе RE, рассчитывают по формулам

(1.5)

(1.6)

Показателем качества стабилизации напряжения служит коэффициент стабилизации Кет, показывающего во сколько раз относительное приращение напряжения на выходе стабилизатора меньше вызвавшего его относительного приращения напряжения на входе:

(1.7)

С учётом того, что Rн >>rд и RБ >>rд, выражение для коэффициента стабилизации запишем в виде выходное сопротивление параметрического стабилизатора Rвих = rд.

Похожие работы

  • Регулирование и стабилизация напряжения и тока источников внешнего электропитания

    “Белорусский государственный университет информатики и радиоэлектроники” Кафедра защиты информации РЕФЕРАТ на тему: РЕГУЛИРОВАНИЕ И СТАБИЛИЗАЦИЯ напряжения и тока источников внешнего электропитания

  • Устройства оптоэлектроники

    Выбор диода, выполняющего заданную функцию, его маркировка и характеристики, схема включения и принцип работы. Схема включения полевого транзистора с общим истоком в динамическом режиме. Преимущества и недостатки некоторых устройств оптоэлектроники.

  • Определение параметров полупроводниковых приборов по их статическим вольтамперным характеристикам

    Характеристика выпрямительного диода, стабилитрона, биполярного транзистора. Электрические параметры полупроводникового прибора, предельные эксплуатационные данные. Определение параметров полупроводников по их статическим вольтамперным характеристикам.

  • Основы радиоэлектроники и схемотехники

    Расчет стабилизированного источника питания с мостовой схемой выпрямителя, каскада с общей базой и значений тока коллектора, соответствующего режиму насыщения. Определение условий обеспечения стабилизации рабочей точки падения напряжения на резисторе.

  • Стабилизаторы напряжения и тока

    Понятие, сущность, классификация, основы проектирования и расчета стабилизатора напряжения последовательного типа. Методика проектирования однофазного мостового выпрямителя, работающего на нагрузку с сопротивлением, порядок вычисления его параметров.

  • Стабилизаторы напряжения

    Максимальное (номинальное) выходное напряжение. Диапазон регулирования. Допустимая относительная нестабильность. Временной (температурный) дрейф. Коэффициент стабилизации. Выходное сопротивление. Параметрические, последовательные стабилизаторы.

  • Расчёт и проектирование вторичного источника питания

    Разработка и проектирование принципиальной схемы вторичного источника питания. Расчет вторичного источника питания, питающегося от сети переменного тока, для получения напряжений постоянного и переменного тока. Анализ спроектированного устройства на ЭВМ.

  • Регулировка источников питания РЭС

    Основные параметры источников питания. Настройка и регулировка нестабилизированных ИП (НИП). Регулировка стабилизированных ИП. Напряжение сети. Структурная схема стабилизатора компенсационного типа. Импульсные источники питания и их структурная схема.

  • Проектирование вторичного источника питания

    Проектирование и рассчет вторичного источника питания (выпрямителя, трансформатора, сглаживающего фильтра, стабилизатора выходного напряжения) с заданными параметрами. Обоснование выбора электрических схем устройства. Питание от сети переменного тока.

  • Параметрические феррорезонансные стабилизаторы переменного напряжения. Компенсационные стабилизаторы напряжения и тока

    Понятие стабильного переменного напряжения, его характеристика и свойства особенностей. Параметрические феррозонансные стабилизаторы напряжения. Компенсационные стабилизаторы напряжения и тока, их описание и особенности каждого из разновидностей.