Название: Выпрямительные устройства и их характеристики
Вид работы: реферат
Рубрика: Коммуникации и связь
Размер файла: 57.28 Kb
Скачать файл: referat.me-169939.docx
Краткое описание работы: Структурная схема и параметры выпрямителей, вентильная группа, сглаживающие фильтры и стабилизатор напряжения. Схемы, принцип действия, параметры и характеристики однофазных выпрямителей, сравнение двухполупериодных выпрямителей с однополупериодными.
Выпрямительные устройства и их характеристики
Выпрямительные устройства и их характеристики
1. Структурная схема и параметры выпрямителей
ВЫПРЯМИТЕЛЬ - это устройство, преобразующее переменный ток в постоянный.
Структурная схема выпрямителя

Трансформатор регулирует напряжение до необходимой величины.
Вентильная группа содержит элементы с односторонней проводимостью: выпрямительные диоды в неуправляемых выпрямителях и тринисторы - в управляемых выпрямителях.
Сглаживающие фильтры предназначены для уменьшения пульсаций выпрямленного напряжения.
Стабилизатор напряжения поддерживает неизменным напряжение на нагрузочном резисторе Rн .
Существуют однофазные и трехфазные, управляемые и неуправляемые выпрямители.
2. Однофазные выпрямители. Схемы, принцип действия, параметры и характеристики
Для выпрямления однофазного переменного напряжения применяют три схемы:
1) однополупериодная;
2) двухполупериодная мостовая;
3) двухполупериодная трансформаторная (с выводом средней точки).
Однополупериодная схема - в которой ток проходит через вентиль только в течение одного полупериода переменного напряжения источника.
Двухполупериодные схемы - в которых ток проходит через вентильную группу в течение двух полупериодов переменного напряжения источника.
Рассмотрим соотношения параметров в выпрямителях при следующих допущениях:
1) Индуктивное сопротивление рассеяния трансформатора и активное сопротивление его обмоток равны нулю;
2) Сопротивление вентиля в прямом направлении равно нулю, а в обратном равно бесконечности.
Однополупериодный однофазный выпрямитель
Временные диаграммы напряжений и токов:
Определим постоянную составляющую выпрямленного тока:


 .
.
Так как  , то
, то

 .
. 
Но так как  , т.е.
, т.е.  , то
, то

или
 .
.
Постоянная составляющая напряжения, выраженная через максимальное значение:
 .
.
Постоянная составляющая напряжения, выраженная через действующее значение:

Таким образом, в данной схеме максимальное напряжение на диоде
 ,
,
т.е. напряжение на диоде в три раза больше, чем на нагрузке.
Среднее значение тока диода в этой схеме  .
.
Величину пульсаций выпрямленного напряжения характеризуют коэффициентом пульсаций
 ,
,
где U1m – амплитуда переменной составляющей напряжения, изменяющегося с частотой повторения импульсов, т.е. амплитуда первой гармоники.
Для однополупериодной схемы
 , а
, а  .
.
Недостатки схемы:
1) большое значение коэффициента пульсаций  ;
;
2) напряжение на нагрузке почти в 3 раза меньше, чем на диоде;
3) постоянная составляющая выпрямленного тока  значительно меньше тока
 значительно меньше тока  во вторичной обмотке трансформатора, что приводит к его недостаточному использованию по току.
 во вторичной обмотке трансформатора, что приводит к его недостаточному использованию по току.
Двухполупериодная мостовая схема


I0 в 2 раза больше, чем в однополупериодной схеме. Поэтому:

 ;
;
 ;
;
Частота выпрямленного тока в 2 раза больше, чем у сети.
 .
.
Двухполупериодная схема с выводом средней точки вторичной обмотки трансформатора


Это фактически сочетание двух однополупериодных выпрямителей, включенных на нагрузочный резистор Rн в различные фазы.
Соотношения параметров в данной схеме такие же, как и в мостовой схеме.
Преимущества двухполупериодных выпрямителей по сравнению с однополупериодным:
Среднее значение выпрямленных тока и напряжения в 2 раза больше, а пульсации меньше.
Но двухполупериодные выпрямители имеют более сложную конструкцию и стоимость.
Сравнение двухполупериодных схем:
1) Мостовая схема конструктивно проще, ее габариты, масса и стоимость ниже, чем трансформаторной схемы.
2) Максимальное обратное напряжение на закрытых диодах в мостовой схеме в 2 раза меньше (на каждый из двух диодов приходится половина напряжения).
3) Но в мостовой схеме необходимо в 2 раза больше диодов.
При выпрямлении токов I >Iпрmax для одного диода параллельно включают однотипные диоды с добавочными сопротивлениями:

Величины токов определяются их сопротивлениями в прямом направлении. Но сопротивления диодов в прямых направлениях Rдпр даже для однотипных диодов различны. Для выравнивания токов диодов последовательно включают добавочные сопротивления. Причем Rд в 5…10 раз больше Rдпр .

При выпрямлении напряжения, превышающего максимально допустимое для диода Uобр.max , используют последовательное соединение диодов, шунтированных резисторами.
При этом обратное напряжение на диодах распределяется в соответствии с их обратными сопротивлениями Rд.обр . Для выравнивания обратных напряжений параллельно диодам включают шунтирующие резисторы Rш , величина которых равна:
Rш =(0,1…0,2) Rд.обр .
3. Сглаживающие фильтры
Схемы, принцип действия, параметры и характеристики
Для уменьшения пульсаций выпрямленного напряжения применяют сглаживающие фильтры (СФ).
Снижение пульсаций оценивается коэффициентом сглаживания
 ,
,
где Kп и Kп ’ – коэффициенты пульсаций до и после фильтра.
Основными требованиями к сглаживающим фильтрам является максимальное уменьшение высокочастотных составляющих токов в сопротивлении нагрузки.
У индуктивного элемента  , а у емкостного элемента
, а у емкостного элемента 
 ,
, 
где k – номер гармоники.
Поэтому индуктивность устанавливают последовательно, а емкость – параллельно нагрузке.
Емкостной фильтр


Конденсатор заряжается до напряжения U2
, когда U2 
> Uс
 (интервал t1
 – t2
). В течение интервала времени (t2
 – t3
) напряжение Uс
 > U2
 – диод закрыт, а конденсатор разряжается через резистор Rн
 с постоянной времени  .
.
С момента времени t3 Uс < U2 – конденсатор заряжается и т.д.
То есть, когда диод пропускает ток конденсатор заряжается, а когда к диоду приложено обратное напряжение – конденсатор разряжается на нагрузку Rн .
Индуктивный фильтр


В течение положительного полупериода напряжения u2 , когда ток i нарастает, индуктивная катушка Lф запасает энергию, а в отрицательный полупериод – энергия расходуется на поддержание тока.
Длительность импульсов тока iн
 определяется постоянной времени  . Чем больше индуктивность Lф
, тем больше затягивается импульс и его амплитуда снижается из-за индуктивного сопротивления
. Чем больше индуктивность Lф
, тем больше затягивается импульс и его амплитуда снижается из-за индуктивного сопротивления  . Падает и среднее значение тока.
. Падает и среднее значение тока.
Обычно индуктивность Lф в однополупериодных схемах не применяют, а используют в двухполупериодных:

Разновидности сглаживающих фильтров:

LC- RC-фильтры; Г-, П-, Т- образные фильтры.
4. Внешние характеристики выпрямителей
Сопротивление нагрузки Rн при работе изменяется, что вызывает изменение нагрузочного тока Iн .
Трансформаторы и вентили (диоды) имеют определенные величины активных сопротивлений Rтр и Rпр . На этих сопротивлениях происходит падение напряжения от тока Iн , приводящее к изменению напряжения на нагрузке Uн .
Внешняя характеристика выпрямителя Uн (Iн ).
 ,
,
где Uхх – выпрямленное напряжение при Iн =0;
 - среднее значение падения напряжения на сопротивлении диода в прямом направлении;
 - среднее значение падения напряжения на сопротивлении диода в прямом направлении;
 - среднее значение падения напряжения на активном сопротивлении вторичной обмотки трансформатора.
- среднее значение падения напряжения на активном сопротивлении вторичной обмотки трансформатора.
Внешняя характеристика определяет границы изменения нагрузочного тока, при котором выпрямленное напряжение не снижается ниже допустимой величины.

1 – выпрямитель без фильтра (характеристика нелинейна из-за Rпр );
2 – Выпрямитель с емкостным фильтром;
В режиме ХХ (Iн =0) выпрямленное напряжение равно амплитудному значению Umхх , а без фильтра – среднему значению.
Для однополупериодного выпрямителя
 ;
;
Для двухполупериодного -
 .
.
При росте тока нагрузки кривая 2 падает более резко, поскольку падение происходит также за счет более быстрого разряда конденсатора на меньшее сопротивление, что снижает напряжение на нагрузке.
3 – Выпрямитель с Г-образным RC-фильтром. Дополнительное снижение напряжения вызвано падением напряжения на последовательно включенном резисторе Rф .
Похожие работы
- 
							Применение полупроводниковых диодов и стабилитронов
							Министерство образования и науки РФ Дальневосточный Государственный Технический Университет (ДВПИ им. Куйбышева) Институт Радиоэлектроники Информатики и Электротехники 
- 
							Сглаживающие фильтры 2
							Сглаживающие фильтры Выпрямители в очень редких случаях работают только на чисто активную нагрузку. Это связано с тем, что большие пульсации выпрямленного напряжения на выходе выпрямителя не устраивают потребителя, поэтому между нагрузкой и выходом выпрямителя включают сглаживающий фильтр. Пульсирующее выпрямленное напряжение содержит постоянную и переменную составляющие. 
- 
							Источники питания электронных устройств
							Функции источников питания электронных устройств. Основные параметры однофазных выпрямителей и сглаживающих фильтров. Расчет однофазных мостовых выпрямителей, работающих на емкостных и Г- образных фильтрах RC, расчет резистивно-емкостных фильтров. 
- 
							Выпрямители с умножением напряжения. Многофазные схемы выпрямителей
							Главные достоинства и недостатки схем выпрямителей с умножением напряжения. Параметры работы схемы Миткевича на активную и активно-индуктивную нагрузку. Использование в технике электропитания фильтров, исключающих или сглаживающих остаточную пульсацию. 
- 
							Расчёт двухполупериодного источника питания.
							Вариант N 8. Домашнее контрольное задание N 3. Расчёт двухполупериудного выпрямителя. Цель расчета выпрямителей: определить токи и напряжения обмоток трансформатора, его мощность выбрать диоды и найти емкость конденсаторов фильтра. Надо отметить, что в большинстве случаев применяют простейшие фильтры в виде конденсатора большой емкости. 
- 
							Устройство и применение высокочастотного выпрямителя
							Устройство и назначение выпрямителей электрического тока, их классификация по ряду признаков, назначение и применение. Обзор характеристик устройства, сфера использования высокочастотных выпрямителей. Пример управления высокочастотным выпрямителем. 
- 
							Однофазный трёхуровневый преобразователь с улучшенным гармоническим спектром входного тока
							Системы для электрических приводов, телекоммуникационные устройства, электролизные и электротермические установки. Сварочные и зарядные аппараты, системы бесперебойного электропитания. Токи при алгоритме управления ключами. 
- 
							Явление перекрытия фаз. Выпрямители однофазной цепи переменного тока
							Негативный характер явления перекрытия фаз: уменьшение среднего значения выходного сопротивления, раздробление и увеличение коэффициента пульсации. Достоинства и недостатки электрических схем выпрямителей, характерные параметры работы и применение. 
- 
							Регулировка источников питания РЭС
							Основные параметры источников питания. Настройка и регулировка нестабилизированных ИП (НИП). Регулировка стабилизированных ИП. Напряжение сети. Структурная схема стабилизатора компенсационного типа. Импульсные источники питания и их структурная схема. 
- 
							Проектирование вторичного источника питания
							Проектирование и рассчет вторичного источника питания (выпрямителя, трансформатора, сглаживающего фильтра, стабилизатора выходного напряжения) с заданными параметрами. Обоснование выбора электрических схем устройства. Питание от сети переменного тока.