Название: Ультразвук Энергия упругих колебаний
Вид работы: реферат
Рубрика: Коммуникации и связь
Размер файла: 97.05 Kb
Скачать файл: referat.me-170583.docx
Краткое описание работы: БЕЛОРУССКИЙ ГОСУДАРСТЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра электронной техники и технологии РЕФЕРАТ на тему: Ультразвук. Энергия упругих колебаний
Ультразвук Энергия упругих колебаний
БЕЛОРУССКИЙ ГОСУДАРСТЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра электронной техники и технологии
РЕФЕРАТ
на тему:
«Ультразвук. Энергия упругих колебаний »
Минск, 2008
1. Ультразвук . Общие сведения
Ультразвук (УЗ) представляет собой упругие колебания и волны в диапазоне от 104 до 109 Гц.
Распространение мощного УЗ в физической среде (газе, жидкости или твердом теле) вызывает ряд специфических эффектов, которые широко используют в различных областях науки и техники.
Уравнение, которое связывает изменения параметров колебательного движения во времени с его изменением в пространстве, называют волновым уравнением.
, (1)
где ξ– смещение упругих колебаний;
t – время;
x – продольная координата.
Решением уравнения является функция
(2)
где ξm – максимальное смещение частицы от положения равновесия (амплитуда колебаний);
ω=2πf – циклическая частота;
k=2π/λ – волновое число;
λ=C/f – длина волны.
Величина φ=kx – называется фазой волны (волнового процесса).
Геометрическое место точек равной фазы в бегущей волне называют фронтом волны .
Скорость распространения фронта волны называется фазовой скоростью.
(3)
В зависимости от формы фронта волны подразделяют на плоские, цилиндрические и сферические.
В плоской бегущей волне амплитуда не меняется при распространении.
В цилиндрической и сферической волне место изменения амплитуды по линии распространения.
В цилиндрической волне амплитуда уменьшается пропорционально ~ R1/2 и в сферической ~ R-1 . Величина
(4)
называется колебательной скоростью . Величина
(5)
характеризует упругую деформацию среды в направлении x.
Тогда из теории упругости можно ввести понятия давления и напряжения
(6)
Для плоской бегущей волны (гармонической) давление и колебательная скорость синфазны, но опережают смещение на 90º.
Скорость распространения огибающей волны (с переменной амплитудой и фазой) называется групповой скоростью
, (7)
при k=const иλ=const U=C=CЗ .
Рисунок 1-Изменение одиночного импульса при распространении в среде.
Отношение давления к колебательной скорости называют удельным (волновым) акустическим сопротивлением.
(8)
где ρ – плотность среды;
С – скорость звука в этой среде.
Волновое сопротивление представляет собой активное сопротивление, на котором рассеиваются удельная акустическая мощность, т.е. энергия, уносимая волной за 1 с, через 1 м. В безграничных газовых и жидких средах возможно существование только продольных волн.
В отличии от жидкостей и газов, которые обладают только упругостью объема, твердые тела имеют упругость объема и формы.
Напряженное состояние твердого тела описывается тензором напряжений, который содержит нормальные и касательные (сдвиговые) составляющие напряжений. Наличие сдвиговых напряжений, обуславливает распространение в твердых телах, кроме продольных, также сдвиговых волн.
Рисунок 2 – Образование продольных (а) и сдвиговых (б) волн в твердых телах.
При нормальном падении бегущей волны на плоскую поверхность возникает интерференционная картина, так называется стоячая волна . Стоячая волна есть суперпозиция двух бегущих волн:
(9)
Стоячая волна характеризуется наличием плоскостей узлов и пучностей волны, фиксированных в пространстве параллельно отраженной границе.
При этом максимальная амплитуда соответствует амплитуде деформации и наоборот. Узлы (нулевые значения) деформации совпадают с пучностями (максимальными значениями) смещения.
Образования стоячих волн возможно на любой частоте f, при этом только смещаются пучности и узлы в пространстве.
Рисунок 3 – Образование стоячих волн.
Величина, характеризующая долю отраженной волны по скорости называется коэффициентом стоячей волны.
(10)
где Fотр – сила отраженной волны;
Рпад – сила падающей волны;
Z1 , Z2 – волновые сопротивления 1–ой и 2 – ой сред.
Коэффициент бегущей волны – характеризует соотношение между бегущей и стоячей (отраженной волной)
(11)
2. Энергия упругих колебаний
При распространении плоской продольной волны элемент массы среды Δm0 = ρ0 ΔV совершает движение вдоль направления распространения волны. При этом его кинематическая энергия
Рисунок 4 - К выводу энергии упругих колебаний.
, (12)
где ξ – смещение от положения равновесия.
На единичный объем приходится кинетическая энергия
(13)
Потенциальная энергия волнового процесса численно равна работе, совершаемой упругими силами, действующими на выделенный объем
(14)
Используя для случая твердого тела выражение для силы F и смещения ξ через деформацию ε, приведем уравнение к виду:
. (15)
Отсюда плотность потенциальной энергии
, (16)
а общая плотность энергии бегущей волны
(17)
Таким образом, плотность энергии в бегущей волне в каждый момент времени равна нулю в местах с наибольшим смещением и максимальна в места, наибольшей по модулю деформации.
По закону сохранения энергии изменения энергии в объеме во времени равно энергии, перешедшей через поверхность, которую можно выразить через работу сил.
В этом случае величина Ф = Sσv является потоком энергии, прошедшем через площадки S. Ее удельное значение I = -σv = ρv, называют плотностью потока энергии, или интенсивностью волны (вектор Умова). Для гармонической бегущей волны
(18)
Из последнего соотношения следует, что плотность потока энергии равна нулю при наибольшем смещении и максимальна при наибольших значениях скорости и деформации, причем достигаем максимума дважды за период. Направление потока энергии всегда совпадает с направлением распространения волны.
Таким образом, в линейном приближении для волнового процесса характерным является перенос энергии в отсутствии переноса массы. Энергия, передаваемая за большое число периодов, может быть определена из среднего значения
(19)
Последнее выражение приводится к виду
, (20)
В отличие от бегущей волны в стоячей волне переноса энергии нет. Это обусловлено тем, что в любой момент времени в узлах деформаций и скоростей поток энергии равен нулю.
Таким образом, каждый участок длиной в четверть длины волны λ/4, заключенным между двумя ближайшими узлами, не обменивается энергией с соседними участками. Его энергия постоянна. В каждом таком участие дважды за период происходит превращение кинетической энергии, сосредоточенный в основном в местах пучности скоростей в потенциальную, сосредоточенную в пучности деформаций.
Следовательно, при скорости равной нулю, энергия целиком потенциальная, а при деформации равной нулю, энергия целиком кинетическая. Энергия ξ на участке 0 ≤ х ≤ λ/4 равна потенциальной энергии в момент v = 0; и cosωt = l; значит
. (21)
ЛИТЕРАТУРА
1. Орлов П.И. Основы конструирования. Справочно-методическое пособие. В 2-х кн. Кн.1. /Под ред. П.Н.Учаева. — 3-е изд. испр. — М.: Машиностроение |
2. Конструирование приборов: В 2-х кн. /Под ред. В.Краузе; Пер. с нем. В.Н.Пальянова; Под ред. О.Ф.Тищенко. —Кн.1. М.: Машиностроение |
3. Конструирование приборов: В 2-х кн. /Под ред. В.Краузе; Пер. с нем. В.Н.Пальянова; Под ред. О.Ф.Тищенко. — Кн.2. М.: Машиностроение |
Похожие работы
-
Расчет и проектирование пассивных элементов колебательных систем
Белорусский государственный университет информатики и радиоэлектроники Кафедра электронной техники и технологии РЕФЕРАТ На тему: «Расчет и проектирование пассивных элементов
-
Нелинейные эффекты вынужденного неупругого рассеивания световой волны в волокне
Понятие и процесс возникновения вынужденного рассеивания Мандельштама–Бриллюэна (SBS) и вынужденного рамановского рассеивания (SRS). Зависимость порога SBS от спектральной ширины лазерного источника колебаний, параметров волокна и длительности импульса.
-
Колебательные, инерционно-дифференцирующие и интегрирующие звенья радиотехнических следящих систем
Частота затухающих колебаний. Переходная и логарифмическая амплитудно-частотная характеристики колебательного звена. Определение постоянной времени идеального дифференцирующего звена. Характеристики форсирующего звена, идеального интегрирующего звена.
-
Габаритный расчет пакета и металлические материалы для пакетов магнитострикционных преобразователей
Явление магнитострикции. Обратный магнитострикционный эффект. Резонансные системы продольных колебаний. Унифицированные конструкции магнитопроводов. Конструирование приборов, использующих принципы магнитных полей. Разнообразие магнитных металлов.
-
Аппарат для ультразвуковой терапии: обобщенная структура, применение ультразвука в хирургии
Предназначение ультразвуковых аппаратов в терапии. Основные технические данные и структурная схема аппаратов. Виды аппаратов УЗ-терапии. Технические характеристики отечественных терапевтических УЗ–аппаратов. Особенности применение ультразвука в хирургии.
-
Ультразвуковые колебательные системы технологического оборудования. Классификация колебательных систем
Ультразвуковая колебательная система (УЗКС). Продольные и поперечные деформации в нулевой продольной волне. Сдвиговые деформации в нулевой крутильной волне, в изгибной волне. Типы упругих колебаний. Полуволновые колебательные системы с преобразователем.
-
Физические обоснования и методика проведения процедур ультразвуковой терапии. Аппаратная реализация аппаратов ультразвуковой терапии
Лечебное применение механических колебаний разной частоты. Звуковые и ультразвуковые волны. Для получения ультразвука используется явление магнитострикции. Схема образования ультразвуковой волны. Принцип работы аппаратов для лечения ультразвуком.
-
Классификация объектов Тактика оснащения объектов системами охранн
Белорусский государственный университет информатики и радиоэлектроники Кафедра РЭС РЕФЕРАТ На тему: "Классификация объектов. Тактика оснащения объектов системами охранной сигнализации"
-
Условия образования утечек речевой информации с использованием ЗУ, РЗУ, специальных воздействий и случайных электроакустических преобразователей
Утечки речевой информации с использованием ЗУ и РЗУ, условия их образования. Классификация закладных устройств. Закладки с передачей информации по токоведущим линиям. Электроакустический канал. Высокочастотное навязывание. Оптико-акустический канал.
-
Пассивные LC-фильтры и активные RC-фильтры
Линейность - важная характеристика, определяющая точность реализации фильтром заданной функции. Принципиальный источник нелинейности, обусловленный нелинейной зависимостью заряда обеденного слоя от поверхностного потенциала и от потенциала затвора.