Название: Примеры изменений типов русловых процессов
Вид работы: доклад
Рубрика: География
Размер файла: 14.86 Kb
Скачать файл: referat.me-60987.docx
Краткое описание работы: В поле координат транспортирующей способности потока и поступления влекомых наносов каждому руслу можно соотнести три точки: текущего состояния, равновесного состояния и потенциального состояния.
Примеры изменений типов русловых процессов
A.Н. Кондратьев
В поле координат транспортирующей способности потока и поступления влекомых наносов каждому руслу можно соотнести три точки: текущего состояния, равновесного состояния и потенциального состояния. Вектор от текущей точки до равновесной показывает направление и интенсивность изменения руслового процесса. В случае, когда эти точки совпадают, река достигла своего равновесного состояния и развивается по одному из типов руслового процесса. Если река находится в состоянии динамического равновесия, то вектор, началом которого является точка потенциального состояния системы поток - русло, а концом - равновесная точка, определяет тип руслового процесса
Перед нами сейчас встаёт вопрос: какова должна быть степень внешнего воздействия на реку, чтобы привести к изменению типа руслового процесса?
Рассмотрим яркий пример изменения типа руслового процесса [2,3] . В 1989 году А.Б. Клавен и В.Н. Никитин провели исследование 175-километрового участка реки Зеи [1]. На всём протяжении этого участка на пойме имеются следы стариц. Это свидетельствует о том, что совсем недавно этот участок реки меандрировал. Однако современная река разделяется на два участка с разными типами руслового процесса. В верхней части - меандрирование, в нижней части - русловая многорукавность. Две нижние излучины правыми берегами упираются в песчаные сопки, высотой 80-100 м (“Белые горы”). “Правый берег является как бы фабрикой наносов для нижележащего участка реки” [1].
Раньше, до приближения к Белым горам, река на всём участке свободно меандрировала. Примерно 1000 лет назад река в процессе своего развития подошла к Белым горам. “В настоящее время река нашла себе наконец форму, посредством которой поступающие сверху наносы перемещаются на нижележащие участки” [1].
Изменение типа происходит в виде выпрямления русла и образования осерёдковой и русловой многорукавности. Такое изменение приводит к равновесному состоянию. Направление вектора изменения типа руслового процесса не обуславливает сам тип руслового процесса. При малом воздействии, когда точка потенциального состояния под влиянием этого воздействия не выходит из той области, в которой она находилась и раньше, отклик системы не приводит к кардинальному изменению типа руслового процесса. Кардинальным изменением можно назвать изменение типа руслового процесса от какого-либо меандрирования к какой либо (русловой) многорукавности или обратно. Такое малое воздействие может привести к изменению, например, от русловой многорукавности к осерёдковой многорукавности. Или же вообще заметно не сказаться на типе руслового процесса.
Таким образом, правомерно разделение внешних воздействий на большие и малые. Изменение типа руслового процесса на реке Зее является иллюстрацией большого внешнего воздействия.
Все внешние воздействия по интенсивности можно подразделить на большие, когда река меняет тип руслового процесса (пример - Зея), и малые, когда оно не приводит к изменению типа руслового процесса.
Следующий вопрос, на который нам необходимо ответить: Как можно разделить внешние воздействия по продолжительности действия?
Для этого рассмотрим ещё один пример изменения типа руслового процесса. На участках расширения поймы реки Амура просматриваются озёра, приуроченные к пойменным массивам, прилегающим к коренным берегам. Образование этих озёр можно объяснить прошлым состоянием реки. По снимку космического фотографирования, на участке ниже города Хабаровска видны следы меандрирующего русла, соизмеримого с современным руслом реки Амур. Размеры излучин и ширина древнего русла соответствуют современному максимальному расходу воды (около 25-28 тыс. м3/с). На этом основании в ГГИ высказано предположение, что 2500 - 3000 лет назад на участке ниже Хабаровска река Амур развивалась по типу свободного меандрирования, при котором сформировалась широкая пойма. Затем произошёл переход к новому типу руслового процесса: сочетание русловой и пойменной многорукавности. Скорее всего, это произошло из-за перегрузки русла наносами (возможно при интенсивном освоении территории древнего Китая под сельскохозяйственные угодья).
Такой случай изменения типа руслового процесса, так же как и на рек Зея, можно отнести к вековым изменениям типа руслового процесса.
Временным изменением типа руслового процесса можно назвать спрямление излучин (например, на реке Миссисипи). Ответная реакция реки приводит к возврату системы к той схеме деформаций, которая была перед воздействием. Прямое русло с увеличенными скоростями относительно быстро придёт к равновесному состоянию за счёт своего удлинения.
Список литературы
Исследование гидрологического и руслового режимов р. Амур на Союзновском перекате и р. Зеи на участке от 150 до 0 км с целью разработки предварительных рекомендаций по улучшению судоходных условий / Государственный гидрологический институт. 1990 г.
Карасёв И.Ф. Русловые процессы при переброске стока. Л.: Гидрометеоиздат. 1975. 288 с.
Карасёв И.Ф. Стабилизация неустойчивого русла. – “Речной транспорт”, 1961, № 1, с. 25-29.
Похожие работы
-
Соотношение транспортирующей способности потока и стока наносов как условие формирования разных типов русел
Расход наносов — количество наносов, проносимых потоком (за единицу времени). Транспортирующая способность потока — предельный расход наносов, который способен транспортировать поток.
-
О гипотезах и причинах формирования русел
Сейчас в науке о русловых процессах основными руслоформирующими факторами считаются транспортирующая способность потока и отношение отметки максимума руслоформирующего расхода к отметке поймы.
-
Три режима движения жидкости – турбулентный, ламинарный и кавитация.
В современной науке общепризнанны два режима движения жидкости – ламинарный и турбулентный. Характерно различие между ламинарным (параллельно струйным) и турбулентным (извилистым) режимами течения жидкостей.
-
Руслоформирующие факторы равнинных рек
Описывается эксперимент, в результате которого был воспроизведён осерёдковый тип руслового процесса.
-
Приёмы исследования природы в русловедении на разных стадиях развития научных представлений
Этапы развития русловедения. Основные проблемы русловедения. Список приёмов решения.
-
Объединение альтернативных гипотез на формирование русел
Сейчас в науке о русловых процессах конкурируют представления о нескольких основных руслоформирующих факторах; два из них: транспортирующая способность потока и отношение максимума руслоформирующего расхода к отметке поймы.
-
Извилистые формы рельефа и разность – причина их образования
Важно найти причину образования таких извилистых (волнообразных) форм рельефа. Нельзя ли найти какую-то общую причину? Понятно, что каждый раз эта причина разная. Но хорошо бы найти что-нибудь общее в их генезисе.
-
Причина образования извилистости: меандрирование рек и других природных потоков
Нестандартная попытка объяснения общей причины образования "извилистости" природных потоков, прежде всего меандрирования рек. Утверждается, что типы речных русел обусловливаются различным соотношением "живой" силы потока и массой переносимого вещества.
-
Приемы решения научных задач в русловедении
В русловедении используется набор приемов и принципов, помогающих системно представлять накопленные знания, решать научные задачи и в некоторой степени прогнозировать развитие науки о русловых процессах.
-
Морфологический ящик природы
Одной из главных движущих причин образования различных типов русловых процессов является относительная транспортирующая способность потока. По этой определяющей оси типы русловых процессов выстраиваются в определенном порядке.