Название: Жаростойкие фосфатные ячеистые материалы переменной плотности
Вид работы: реферат
Рубрика: Промышленность и производство
Размер файла: 37.6 Kb
Скачать файл: referat.me-299601.docx
Краткое описание работы: Разработаны ячеистые фосфатные материалы переменной плотности с использованием алюмосиликатных микросфер. Твердение материала обеспечивается за счет самораспространяющейся экзотермической реакции.
Жаростойкие фосфатные ячеистые материалы переменной плотности
Жаростойкие фосфатные ячеистые материалы переменной плотности
Ч.Г. Пак, В.А. Абызов, В.М. Батрашов
Разработаны ячеистые фосфатные материалы переменной плотности с использованием алюмосиликатных микросфер. Твердение материала обеспечивается за счет самораспространяющейся экзотермической реакции.
Создание огнеупорных материалов, обладающих высокими физико-механическими и теплотехническими характеристиками, устойчивых к воздействию высоких температур и агрессивных сред, является одной из важнейших задач материаловедения.
При решении данной проблемы необходимо использовать современные технологии получения огнеупорных материалов. Одним из перспективных способов получения термостойких высокоогнеупорных материалов является самораспростра- няющийся высокотемпературный синтез. Процесс протекает с сильноэкзотермическим взаимодействием элементов в режиме горения при температуре до 2500...4000 °С, обеспечивая получение плотных огнеупорных материалов [1].
В работе [2] было установлено, что экзотермическая реакция между порошком алюминия и фосфатным связующим, сопровождающаяся значительным газо- и тепловыделением, обеспечивает формирование ячеистой фосфатной композиции. При этом максимальная температура реакции достигает 210.. .260 °С, что является достаточным для твердения материала. Конечные продукты синтеза - высокотемпературные фосфатные соединения с преобладанием А1Р04. Показано, что основным способом управления процессами структурообра- зования и свойствами такого материала является регулирование активности связующего путем изменения концентрации ортофосфорной кислоты и ее частичной нейтрализации, например соединениями алюминия и хрома [3, 4]. Если в данную композицию ввести огнеупорные порошки (кислые огнеупорные оксиды и их смеси, наполнители алюмосиликатного, глиноземистого и хромглино- земистого состава), то формируется ячеистый жаростойкий материал (газобетон) со средней плотностью 400... 1000 кг/м3 и температурой применения до 1400... 1600 °С [3-5]. Такой газобетон широко используется для изоляции стекловаренных печей и тепловых агрегатов в промышленности строительных материалов.
В настоящей работе была поставлена цель разработать ячеистые жаростойкие материалы переменной плотности, твердеющие в режиме еамо- распространяющегося экзотермического синтеза, применяя различные порошки алюминия. В качестве наполнителей использовали: тонкомолотый шамот с удельной поверхностью 4000 см2/г Сухо- ложского завода, отработанный алюмохромовый катализатор ИМ-2201 ОАО «Каучук» (г. Стерли- тамак) по ТУ 2123-093-16810126-2004, алюмоси- ликатные микросферы с насыпной плотностью 420 кг/м3, полученные фракционированием золы Рефтинской ГРЭС (Свердловская обл.). Связующее - алюмохромфосфатное производства ЗАО «ФК» г. Буй (Костромская обл.). В качестве алюминиевого порошка использовали алюминиевую пудру ПАП-1 по ГОСТ 5494, модифицированную алюминиевую пудру ПОС-15 и алюминиевый порошок ПА-4. Изделия формовали в три слоя с различными дозировками дисперсного алюминия. Наполнителями для нижнего и среднего слоя газобетона являлись шамот и отработанный катализатор ИМ-2201, для верхнего слоя - алюмосиликат- ные микросферы.
а)б)
Влияние вида алюминиевого порошка на структуру ячеистого жаростойкого фосфатного материала: а - алюминиевая пудра ПАП-1, модифицированная алюминиевая пудра ПОС-15; 6 - алюминиевый порошок ПА-4
Вне зависимости от вида дисперсного алюминия, у полученных материалов четко видны 3 зоны (см. рисунок): более плотный фосфатный газобетон со средней плотностью 800...1200 кг/м3, промежуточная структура и фосфатный газобетон на алюмосиликатных микросферах со средней плотностью 300.. .400 кг/м3.
Таким образом, использование алюмосиликатных микросфер помимо традиционных наполнителей позволяет получить фосфатный газобетон переменной плотности в режиме самораспростра- няющегося экзотермического синтеза, что существенно расширяет его области применения.
Список литературы
Мержанов, А. Г. Самораспространяющийся высокотемпературный синтез тугоплавких соединений / А. Г. Мержанов // Вестник АН СССР. - 1976. -М 10. - С. 76-84.
Абызов, А.Н. Получение теплоизоляционных жаростойких фосфатных материалов методом самораспространяющегося синтеза / А.Н. Абызов // Жаростойкие материалы и бетоны: сб. науч. тр. — Челябинск: УралНИИстромпроект, 1978. - С. 50-53.
Абызов, А.Н. Получение поризованных жаростойких фосфатных материалов методом самораспространяющегося экзотермического синтеза / А.Н. Абызов // Тез. докл. Всесоюз. совещ. «Высокотемпературная химия силикатов и оксидов». -Л.: Наука, 1988. - С. 399-401.
Пак, Ч.Г. Разработка и исследование жаростойкого алюмохромфосфатного газобетона: автореф. дис. ... канд. техн. наук / Ч.Г. Пак. - М.: НИИЖБ, 1987. -21 с.
Абызов, В.А. Ячеистые жаростойкие материалы на основе промышленных отходов /
А. Абызов // Строительство и образование: сб. науч. тр. - Екатеринбург: УГТУ, 2001. - Вып. 4. - 123-124.
Похожие работы
-
Легкие бетоны
Ячеистые бетоны являются разновидностью лёгкого бетона, его получают в результате затвердевания вспученной при помощи порообразователя смеси вяжущего, кремнеземистого компонента и воды.
-
Использование техногенного сырья для производства гипсовых и гипсоцементно-пуццолановых вяжущих веществ
Приводится пример использования техногенного сырья для производства гипсовых и гипсоцементно-пуццолановых вяжущих веществ. Техногенным сырьем служат попутные продукты промышленности – витаминный гипс, цитрогипс, керамзитовая пыль и зола ТЭС.
-
Методы определения плотности металлов и сплавов
Министерство образования Российской Федерации Южно-Уральский государственный университет Кафедра физического металловедения и физики твёрдого тела
-
Современная терракота: технические возможности ячеистого кирпича и черепицы
Этот материал, который не затронули существенные инновации производственного процесса или значительные изменения химического состава, тем не менее, претерпел серьезную эволюцию и как строительный материал, и в сфере применяемых технических приемов.
-
Жаростойкие бетоны
Содержание Введение Материалы для производства жаростойких бетонов Требования к материалам для изготовления жаростойких бетонов Расчет состава жаростойкого бетона
-
Теплоизоляционные материалы 2
Теплоизоляционные материалы (ТИМ) – материалы и изделия, обладающие низкой теплопроводностью и предназначенные для тепловой изоляции зданий, сооружений, тепловых промышленных установок, технологического оборудования, холодильных камер, трубопроводов, транспортных средств и других объектов.
-
Система автоматического управления стабилизации уровня вибраций
Построение элементарной схемы и исследование принципа работы системы автоматического управления, ее значение в реализации способа поднастройки системы СПИД. Основные элементы системы и их взаимосвязь. Анализ устойчивости контура и его оптимальных частот.
-
Разработка регулятора температуры обратной воды калорифера
Применение ИС программирования КОНГРАФ в работе над проектом регулятора температуры воды калорифера в зависимости от температуры наружного воздуха. Структурная схема алгоритма регулятора температуры горячей воды калорифера, разработка блоков проекта.
-
Актуальность совершенствования качества бетона в современном строительстве
Производство и виды бетона, вяжущие вещества и наполнители, способы увеличения прочности, области применения. Основные виды цемента, портландцемент, сырье и добавки для его производства. Развитие современные технологий по производству цемента и бетона.
-
Химический состав и огнеупорность шамотных изделий
Шамот (франц. chamotte), огнеупорная глина или каолин, обожжённые до потери пластичности, удаления химически связанной воды и той или иной степени спекания. Иногда Ш. называют также некоторые другие исходные материалы для производства огнеупоров.