Referat.me

Название: Изучение твердофазных реакций, протекающих при высокотемпературном окусковании тонкоизмельчённых железорудных материалов

Вид работы: лабораторная работа

Рубрика: Промышленность и производство

Размер файла: 44.29 Kb

Скачать файл: referat.me-299823.docx

Краткое описание работы: Процесс термообработки шихты. Реакции между твёрдыми компонентами обрабатываемого материала, которые существенно влияют на протекание процессов спекания и упрочнения. Отличие реакции между твёрдыми реагентами от реакций в растворах и расплавах.

Изучение твердофазных реакций, протекающих при высокотемпературном окусковании тонкоизмельчённых железорудных материалов

Практическая работа №1

Изучение твердофазных реакций, протекающих при высокотемпературном окусковании тонкоизмельчённых железорудных материалов

В процессе термообработки шихты при производстве агломерата и обжиге окатышей значительное развитие получают реакции между твёрдыми компонентами обрабатываемого материала, которые существенно влияют на протекание процессов спекания и упрочнения.

Реакции между твёрдыми реагентами сильно отличаются от реакций в растворах и расплавах. Первое отличие: природа первичного продукта реакции не зависит от соотношений количеств реагирующих веществ. Так, при соотношении твёрдых реагентов СаО и SiO2 от 3:1 до 1:1, первичным продуктом реакции во всех случаях будет 2СаОSiO2. Только при последующей многочасовой выдержке появляются конечные продукты реакции, состав которых соответствует составу исходной смеси. При агломерации время пребывания шихты в зоне высоких температур исчисляется несколькими минутами, а при обжиге окатышей - несколькими десятками минут. В этих условиях природа окончательных и даже вторичных продуктов твердофазных реакций не играет никакой роли. Таким образом, между любой парой реагирующих веществ в общем случае может возникнуть лишь вполне определённое соединение (табл. 1).

Таблица 1

Первичные продукты реакции между твёрдыми фазами

Реагирующие твёрдые вещества Молекулярные соотношения в смеси Первичный продукт реакции
СаО+SiO2 3:1; 2:1; 3:2; 1:1 2СаОSiO2
МgО+SiO2 2:1; 1:1 2МgОSiО2
СаО+А12 О3 3:1; 5:3; 1:1; 1:2; 1:6 СаОА12 О3
МgО+А12 Оз 1.1; 1:6 МgОА12 О3
СаО+Fе2Оз 2:1; 1:1 СаОFе2Оз
3 О4 +SiO2 2Fе3 О4 +3 SiO2 =ЗFе42 2FеОSiO2 (фаялит)

Первым продуктом твердофазной реакции, независимо от исходного соотношения реагентов, является вещество с наименьшей молярной теплотой плавления и минимальной поверхностной энергией (чаще всего это вещество с наиболее простым строением решётки).

Второе отличие твердофазных реакций - решающим фактором протекания реакций является не химическое сродство реагентов, а наличие непосредственного контакта реагирующих веществ. При спекании офлюсованной шихты (окатышей) эта особенность реакций в твёрдой фазе приводит к тому, что, несмотря на большее химическое сродство СаО и SiO2 ,чем СаО и Fе2Оз, из-за малого их количества (СаО и SiO2), в твёрдой фазе образуются главным образом ферриты кальция.

Важной характеристикой процессов в твёрдой фазе является температура начала взаимодействия реагентов (табл. 2).

Таблица 2

Температура начала взаимодействия между твёрдыми компонентами

Реагирующие вещества Твёрдый продукт реакции Температура начала взаимодействия, °С
СаО+Fe2Оз СаОFе2Оз 500 - 650
2СаО+SiO2 2СаОSiO2 500 - 690
SiO2+Fe2Oз ограниченный тв. раствор 575
2МgО+SiO2 2МgОSiO2 680
МgО+Fе2 О3 МgОFе2Оз 600
3 О4 + SiO2 2FеОSiO2 990

Среди компонентов окусковываемых шихт есть такие вещества, которые совсем не реагируют между собой при сколь угодно продолжительной выдержке. Например, гематит Fе2Оз не реагирует с кремнезёмом, магнетит FезО4 не взаимодействует с известью СаО.

Механизм и кинетика взаимодействия твёрдых веществ чрезвычайно сложны.

Скорость твердофазных реакции является функцией поверхностного натяжения. Объединение двух частиц одинакового размера происходит в том случае, если поверхностная энергия новой фазы, образующейся на границе раздела фаз, будет меньше суммы поверхностных энергий исходных составляющих: ав < а + в , где а , В, АВ - поверхностные энергии соответственно исходных составляющих, А и В и новой фазы АВ.

Объединение частиц протекает двухступенчато: 1) образование мостика продуктов реакции между частицами; 2) диффузия ионов через плёнку продуктов реакции.

Рис. 1. Схема диффузии:

1 -поверхностная диффузия; 2 - диффузия

через решётку; 4 - диффузия на границах

зёрен.

Образование мостиков в твёрдом состоянии обеспечивается с помощью диффузии, ионов сквозь кристаллическую решётку (рис.1), которая может происходить только в том случае, если ионы преодолевают силы связи в решетке и оставят узлы, в которых они находились при более низких температурах.

На границах зёрен кристаллов, где решётка менее упорядочена, диффузия протекает с большей скоростью, чем внутри кристалла. Поэтому при низких температурах преобладают диффузия наповерхности и на границе раздела зёрен.

Мелкие частицы имеют большую поверхность, чем крупные, и обладают более значительной диффузионной способностью.

Согласно теории Вагнера, о раздельном перемещении, ионов и электронов через продукт реакции, устойчивое течение твердофазной реакции возможно лишь при наличии компактных слоев продуктов реакции, разделяющих исходные вещества. Если диффузия ионов через плёнку продуктов реакции затруднена, то реакция затухает.

В смеси СаО и SiO при 100 .С за 1' реагировало до 60% исходных веществ. В тех же условиях в смеси СаО и Fе2Оз реагировало 70% исходных веществ. То есть скорость образования ферритов кальция выше, чем скорость образования силикатов кальция.

По Тамману процессы массообмена в твёрдом теле, главным образом в оксидах, происходят с измеримой скоростью только после достижения температуры, составляющей 2/3 температуры плавления соответствующего твердого тела. Поэтому при низких и умеренных температурах твердофазные реакции протекают крайне медленно.

Суммарная скорость процессов в твёрдой фазе определяется не только свойствами слоя (плёнки) продуктов реакции, но и величиной поверхности соприкосновения,

которая, в свою очередь зависит в большой мере от тонкости измельчения реагирующих веществ.

Практические выводы из теории твердофазных реакций для процессов окускования

1. При окусковании неофлюсованой шихты в твёрдой фазе идёт образование фаялита. Если спекается (агломерируется) гематитовая шихта, то образование фаялита невозможно до тех пор, пока не произойдёт восстановление части Fе2Оз до FезО4, то есть этой реакции способствует восстановительная атмосфера.

2. В офлюсованной шихте наибольшее развитие получает реакция между СаО и Fe2O3 (то есть ниже температура начала реакции, выше скорость реакции, наибольшее число контактов). Реакции способствует окислительная атмосфера, так как Fе3О4 не реагирует с СаО при обычном давлении.

3. Твердофазные реакции не определяют конечную структуру агломерата и не всегда определяют конечную структуру окатышей, так как большая часть продуктов этих реакций при плавлении диссоциируют на более простые составляющие.

Контрольные вопросы

1. В чем заключается одно из отличий твердофазных реакций, касающееся первичного продукта реакции? Как эта особенность влияет на процессы спекания при окусковании железорудных материалов? Какие первичные продукты твердофазных реакций характерны для окускованых железорудных материалов? Каковы особенности первичного продукта?

2. В чем заключается особенность твердофазных реакций, связанная с поверхностью контакта реагирующих веществ, и как эта особенность влияет на состав продуктов реакции при спекании различных шихт?

3. Каковы температуры начала взаимодействия реагентов при спекании железорудных материалов (и продукты )?

Каков механизм твердофазных реакций: 1) условие образования новой фазы; 2)ступени процесса; 3) типы диффузии.

4.От чего зависит скорость твердофазных реакций?

5.Каковы практические выводы из теории твердофазных реакций для процессов окускования?

Похожие работы

  • Термодинамическая диссоциация оксидов железа

    Содержание Введение 1. Виды диссоциации 2.Термодинамический анализ процессов диссоциации 3. Диаграммы состояния металлургических систем Заключение

  • Десульфуризация

    Цель работы: определить степень десульфуризации при плавке огарка заданного состава; по степени десульфуризации рассчитать количество и состав штейна, который получится при плавке.

  • Сплавы

    Реферат На тему: " Сплавы" 2009 Содержание Введение Фазы металлических сплавов Диаграммы состояния сплавов Связь между структурой и свойствами сплавов

  • Определение теплового баланса сушилки гипсовых форм в производстве керамических изделий

    Контрольная работа на тему Определить тепловой баланс сушилки гипсовых форм в производстве керамических изделий»является самостоятельной квалификационной работой студента по дисциплине «Основы технологий производств».

  • Построение эпюр поперечных сил, изгибающих моментов и выбор сечений балок

    Построение эпюр для консольных балок. Величина максимального изгибающего момента. Момент сопротивления круглого поперечного сечения относительно центральной оси и прямоугольника относительно нейтральной оси. Поперечные силы и изгибающие моменты.

  • Процессы, идущие при повышенном или пониженном давлении

    Применение повышенного и пониженного давления в химических технологиях как метод воздействия на структуру, свойства и форму материалов. Давление как фактор интенсификации газообразных процессов. Его воздействие на жидкофазные процессы, твердую фазу.

  • Задачи по Теоретической менханике

    Вариант №10 Задание №1 Определить реакции опор горизонтальной балки от заданной нагрузки Дано: Решение: Рассмотрим равновесие балки (рис. 1). К балке приложена уравновешенная система сил, состоящая из активных сил и сил реакции.

  • Доменное производство

    Содержание. Содержание. 2 Цель работы.. 3 1. Расчет состава шихт для окускования железорудного сырья. 4 1.1. Исходные данные. 4 1.2. Расчет шихты. 4 1.3. Расчет состава агломерата. 5

  • Разрушение твердых тел

    Основное исходное положение механики разрушения. Критерии прочности, радиационное повреждение конструкционных материалов. Коррозия металлов под напряжением. Прочность твердых деформируемых тел в газообразных средах. Особенности радиационного упрочнения.

  • Металлургические процессы в печах

    Металлургические процессы в печах. Металлургических процессов в печах требует их окускование для обеспечения достаточной газопроницаемости. Традиционно шихтой для