Referat.me

Название: Термодинамічні розрахунки ймовірності протікання твердофазних реакцій у процесах спікання металургійної сировини

Вид работы: лабораторная работа

Рубрика: Промышленность и производство

Размер файла: 41.41 Kb

Скачать файл: referat.me-300232.docx

Краткое описание работы: Величин, що характеризують хімічні системи: внутрішня енергія U, ентальпія Н, ентропія S й енергія Гіббса (ізобарно-ізотермічний потенціал) G. Стандартний стан речовини при даній температурі. Направлення мимовільного протікання хімічних реакцій.

Термодинамічні розрахунки ймовірності протікання твердофазних реакцій у процесах спікання металургійної сировини

Практична робота №2

Термодинамічні розрахунки ймовірності протікання твердофазних реакцій у процесах спікання металургійної сировини

До найважливіших величин, що характеризують хімічні системи, відносятся: внутрішня енергія U, ентальпія Н, ентропія S й енергія Гіббса (ізобарно-ізотермічний потенціал) G. Всі ці величиниє функціями стану, тобто залежать тільки від стану системи, але не залежать від способу, яким цей стан досягнутий.

При екзотермічних реакціях (тепло виділяється) внутрішня енергія системи зменшується (AU<0). Якщо внутрішня енергія системи зростає () , то процес супроводжується поглинанням енергії із зовнішнього середовища (ендотермічні реакції).

Якщо в результаті хімічної реакції система поглинула тепло Q і зробила роботу А , то зміна внутрішньої енергіїмає такий вигляд U = Q - А.

Відповідно до закону збереження енергії, U залежить тільки від початкового й кінцевого станів системи, але не залежить від способу здійснення процесу (реакції). Навпроти, Q й А будуть розрізнятися залежно від способу здійснення процесу (функцією станує тільки різниця Q й А , але не кожна з них окремо).

Якщо реакція протікає при постійному об’ємі (V = 0, ізохорний процес), то робота розширення системи (А = P* V) дорівнює нулю. Якщо при цьому відбуваються й інші види роботи, наприклад електрична, то U = QV , де Qv - тепловий ефект реакції (тобто кількість поглиненою системою теплоти), що протікає при постійному обсязі. Для екзотермічної реакції Qv < 0, для ендотермічноїQv > 0.

Для ізобарного процесу ( = 0), більшехарактерного для хімічних реакцій, зручніше користуватися не U, а Н = U+P V.

При постійному тиску Н = U+P V .

Якщо при цьому ніякі інші роботи не відбуваються, Н = Q , де Q - тепловий ефект реакції, що протікає при постійному тиску.

Стандартний стан речовини при даній температурі - його стан у вигляді чистої речовини при нормальному атмосферному тиску 101325 Па, або 760 мм.,рт.,ст. стандартні умови протікання реакції —> стандартні зміни відповідних величинU0 і Н0 [кДж].

Стандартна ентальпія реакції утворення 1 моля даної речовини із простих речовин звичайно виражається в кДж/моль.

Закон Гесса (1840р.): Тепловий ефект хімічної реакції залежить тільки від початкового й кінцевого станів речовин, що беруть участь у реакції, і не залежить відпроміжних стадій процесу. Наслідок: Стандартназмінаентальпії хімічної реакції дорівнює сумі стандартнихентальпійутворення продуктів реакції за винятком суми стандартних ентальпій речовин, що утворилися,[ аналогічно для Sй G].

Направлення мимовільного протікання хімічних реакцій визначається спільною дією двох факторів: 1) тенденцією до переходу системи в станз найменшою внутрішньою енергією (ентальпіею); 2) тенденцією до досягнення найбільш ймовірного стану, що може бути реалізовано найбільшим станомрівноймовірних способів (мікростанів).

Мірою першою (проявляється при всіх температурах однаковою мірою) тенденції єH( U) - зменшення яких сприяє мимовільному плину ізобарного процесу (екзотермічний процес).

Мірою другою (проявляється тим сильніше, чим вище температура) тенденції єS [Дж/мольК] = Qобр /T., S = klg, де k - коефіцієнт пропорційності; W - число рівноймовірних мікроскопічних станів, якими може бути реалізований даний макростан.

S зростає з підвищенням температури, при переході від кристалічного стану в рідкий й далі в газоподібний; при збільшенні числа газових молекул у долі реакції.

У відмінності від ентальпії , ентропія утворення простої речовини не дорівнює нулю. Функція, що одночасно відбиває вплив обох тенденцій на напрямок протікання хімічних процесів називається енергією Гіббса: G = H-TS, характеризує максимальну роботу процесу.

Для ізобарно-ізотермічних процесів G = Н - T S .

При сталості температури й тиску хімічні реакції можуть мимовільно протікати тільки в одному напрямку, при якому енергія Гіббса системи зменшується ( G < 0).

Використовуючи дані, щоприводять у довідниках, по термодинамічних властивостях речовин можна розрахувати стандартназміна цієї функції G0 = Н - T S. У принципі характеристику можна використати для оцінки термодинамічної ймовірності реакції. Однак до такої оцінки варто підходити з обережністю, тому що стандартні умови (25°С и 1 ат) не відповідають реакційним умовам протікання процесу, при яких значення °С може істотно відрізнятися від стандартного. Перерахування стандартних термодинамічних величин на інші вимагає відомостей про теплоємність речовин, що беруть участь у реакції.

Термодинамічна ймовірність - число мікростанів (мікророзподілів), якими може здійснюватися розглянутий макророзподіл.

Число мікророзподілів N часток по п станах (наприклад N часток в

n відсіках) виражається формулою W= (1), де N 1, N2 ,...Nn - число часток в

нервом, другому й n-номстані (відсіку). Причому N = N1 +N2 +...+Nn.

Обчислимо термодинамічні ймовірності макростанів а, б, в, м, д, наведених на мал. 1.

W(а)= =90 ; W(б) = =60 ; W(в) = =20 ;

W(г) = =15 ; W(д) = =1.

Таким чином, найбільша термодинамічна ймовірність у рівномірного розподілу, воно може здійснюватися найбільшим числом способів.

Больцман показав, що ентропія системи S може служити характеристикою термодинамічної ймовірності даного стану системи W. Зв'язок між ними виражається рівнянням S = Rln = kNaln (2) де R -універсальна газова постійна; Na-число Авогадро;

k = - постійна Больцмана.

Формула (2) ставиться до числа найкращих співвідношень, породжених науковою думкою [усього їх три, у тому числі формула Эйлера й формула Эйнштейна], що зв'язує простим співвідношенням величини, щоволодіютьзовсім різним змістом, щоставляться до різних матеріальних сутностей [фізичні величини S, R зматематичноїW].

S = Rln klg =klg де M = lge= 0,4343 - модуль десяткового логарифма;

k к оефіцієнт пропорційності. Число е є межа, до якого

прагне при необмеженому зростанні n ; е = 2,718.

Абсолютно достовірною характеристикою можливості протікання реакції в розглянутих умовах служитьістина зміна енергії ГіббсаG , зв'язанезі стандартною зміною G0 рівнянням ізотерми хімічної реакції. У загальному випадку знак G може не збігатися зі знаком G0 .

Знак G0 буде збігатися зі знаком G у двох випадках:

1) парціальний тиск учасників реакції мало відрізняється від стандартногозначення;

2) G0 більше, відносно за абсолютним значенням (практично більше 40 кДж).

Термодинамічну можливість протікання реакції варто відрізняти від практичної можливості, під якою мається на увазі протікання реакції з помітною швидкістю. Наявність кінетичних утруднень може стати перешкодою до проведення реакції з необхідною швидкістю.

Контрольні питання

1. Яким чином можна визначити можливість протікання хімічної
реакції?

2. Як можна оцінити термодинамічну ймовірність протікання реакції?

3. Чим відрізняється термодинамічна можливість протікання реакції відпрактичної можливості?

4. Як можна розрахувати G (по яких формулах) і що ця величина
характеризує?

5. Які фактори сприяють мимовільному протіканню хімічної
реакції?

6.Як впливає на ці фактори температура?

7.Напишіть рівняння Больцмана й поясните його досконалість.

8.Як формулюється закон Гесса і який наслідок із цього закону?

Чому дорівнює тепловий ефект реакції при постійному тиску й при постійному обсязі?

Похожие работы

  • Сировина в технологічних процесах

    ЗМІСТ Вступ 1. Класифікація сировини 2. Якість сировини, її раціональне і комплексне використання 3. Мінеральна сировина 4. Вода в промисловості Висновок

  • Переробка нафти і нафтопродуктів

    Підготовка нафти до переробки: видалення розчинених газів та мінеральних солей, зневоднювання нафтової емульсії. Аналіз складу нафти та її класифікація за хімічним складом, вмістом та густиною. Первинні і вторинні методи переробки. Поняття крекінгу.

  • Рух механічної системи із двома ступенями волі

    Застосування теорем динаміки до дослідження руху механічної системи. Закон зміни зовнішнього моменту, що забезпечує сталість кутової швидкості. Диференціальне рівняння відносного руху матеріальної крапки. Визначення реакцій в опорах обертового тіла.

  • Традиційні та прогресивні технологічні процеси

    Характеристика, техніко-економічні показники традиційних, прогресивних технологічних процесів: високотемпературних, каталітичних, електрохімічних, біохімічних, фотохімічних, радіаційно-хімічних, ультразвукових, лазерних, електронно-променевих, плазмових.

  • Технологія виробництва азотної кислоти

    Загальна характеристика хімічної промисловості. Фізико-хімічні основи та технологічна схема виробництва азотної кислоти. Розрахунок балансу хіміко-технологічного процесу. Теплові розрахунки хімічного реактора. Розрахунок ентропії та енергії Гіббса.

  • Хімічне виробництво і хімічна технологія

    Розвиток хімічних виробництв і технології. Сучасний стан хімічного промислового комплексу України. Склад та структура хімічного виробництва. Головні експлуатаційні та соціальні показники ефективності: надійність, ступінь автоматизації, екологічність.

  • хіміко-технологічна система

    Принципи складання матеріальних і теплових балансів. Ентальпійний, енергетичний і ексергічний показники, їх використання в аналізі ХТС. Взаємозв'язок між окремими елементами системи, а також фізико-хімічна суттєвість процесів, що протікають у системі.

  • Синтез аміаку

    Швидкість реакції синтезу аміаку. Вплив тиску, температури та концентрації аміаку на протікання реакції. Оптимальне співвідношення реагентів. Розрахунок кількості теплоти при синтезі аміаку. Обчислення константи та продуктивності колони реакції синтезу.

  • Аналіз розчинення азоту в рідких і тугоплавких металах при температурах до 3125К

    Дослідження основних термодинамічних залежностей розчинення азоту в рідких залізованадієвих, залізоніобієвих сплавах та в рідких чистих ванадії та ніобії. Побудова кінетичних залежностей розчинення азоту в чистих ванадії, ніобії, цирконії і титані.

  • Аналіз можливих схем електрохімічних генераторів для автономних джерел електричної енергії

    Характеристика системи автономного електропостачання. Будова і склад електрохімічного генератора. Аналіз робочого процесу паливних елементів. Технологічні схеми електрохімічних агрегатів. Захист електрохімічних генераторів від струму короткого замикання.