Название: Расчет и проектирование турбины приводного газотурбинного двигателя
Вид работы: курсовая работа
Рубрика: Промышленность и производство
Размер файла: 189.29 Kb
Скачать файл: referat.me-300705.docx
Краткое описание работы: Определение работы расширения (располагаемый теплоперепад в турбине). Расчет процесса в сопловом аппарате, относительная скорость при входе в РЛ. Расчет на прочность хвостовика, изгиб зуба. Описание турбины приводного ГТД, выбор материала деталей.
Расчет и проектирование турбины приводного газотурбинного двигателя
Московский Государственный Технический Университет
им. Н.Э.Баумана
Калужский филиал
РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовому проекту на тему:
"РАСЧЕТ И ПРОЕКТИРОВАНИЕ ТУРБИНЫ ПРИВОДНОГО ГТД"
Содержание
Расчет первой ступени
Расчет второй ступени
Профилирование
Расчет на прочность
Описание установки
Выбор материалов
Список литературы
Расчет турбины приводного ГТД.
Исходные данные: ;
;
;
;
;
;
;
Принимаем: ;
;
- степень реактивности;
- коэффициент скорости в рабочих лопатках,
- коэффициент скорости сопловой решетки первой ступени;
,
,
Вычисления:
Находим располагаемую работу расширения (располагаемый теплоперепад в турбине):
Определяем число ступеней:
- коэффициент возврата тепла
Расчет первой ступени:
50% от , получаем
;
Расчет процесса в сопловом аппарате.
- располагаемый теплоперепад в сопловом аппарате
- скорость на выходе из соплового аппарата
- относительная скорость при входе в РЛ
- температура в конце изоэнтропийного расширения в СА
- полное давление на выходе из соплового аппарата
- температура газа за сопловым аппаратом
- удельный объем газа за решеткой СА
Расчет параметров за рабочим колесом.
- относительная скорость на выходе из РЛ
- абсолютная скорость газа за ступенью
Определяем размеры соплового аппарата.
принимаем
- высота сопловой лопатки в сечении на выходе из решетки
Определяем размеры РЛ.
- Эйлера работа газа на окружности колеса турбины
- КПД ступени на окружности колеса
- потери в РЛ
Относительные потери в сопловом аппарате:
- коэффициент потерь кинетической энергии в СА
- коэффициент потерь с выходной скоростью
- коэффициент потерь кинетической энергии в РЛ
Потери в СА.
- коэффициент конфузорности, так как k>1.7, то к=1.7
(определяем по графику)
Потери в РЛ.
Расчет второй ступени
;
;
.
Определяем размеры соплового аппарата.
Определяем размеры РЛ.
Потери в СА.
- коэффициент конфузорности, так как k>1.7, то к=1.7
(определяем по графику)
Потери в РЛ.
Профилирование
Используем закон профилирования .
Периферия.
Корень.
Расчет на прочность.
ХВОСТОВИК.
Материал ХН65КНВЮТ; ;
;
.
ДИСК.
Материал 25Х1М1Ф; ;
;
ИЗГИБ ЗУБА.
;
;
;
;
Описание установки.
Турбина приводного ГТД состоит из одноступенчатого компрессора, трубчато-кольцевой КС, осевой двухступенчатой турбины.
Турбина - осевая, двухступенчатая. Ротор турбины выполнен из двух частей: вала и двух дисков с лопатками. Задний вал - цапфа выполнен заодно со вторым диском турбины, передний вал ротора фланцем соединяется с обоими дисками при помощи шести болтов. Диски турбины выполнены из материала 25Х1М1Ф, передний и задний валы выполнены из стали ЭИ-961.
Сопловые аппараты первой и второй ступени состоят из литых лопаток, выполненных из сплавов ЖС-6К, и набранных в кольца. Передний сопловой аппарат передает усилие на задний корпус компрессора через внутреннюю стойку, связанную с корпусом гофрированной обечайкой.
В зоне работы рабочих лопаток вмонтированы металлокерамические вставки из материала УМБ-4С. Ротор турбины вращается на переднем шариковом подшипнике. Радиальные и осевые усилия от шарикового подшипника воспринимаются корпусом компрессора. Корпус турбины состоит из двух кожухов, выполненных из жаропрочной листовой стали, соединенных между тремя профильными стойками. Внутренняя полость стоек используется для подвода масла к подшипнику, слива масла из него и для воздушного охлаждения заднего диска турбины.
Передний диск турбины и замковое соединение лопаток охлаждаются воздухом, поступающего из камеры сгорания в полость переднего вала.
Выбор материалов
Выбор материала деталей газовых турбин производится на основании технико-экономических соображений, которые должны обеспечить:
- надежность работы изделия в течении всего срока службы. Это требование предполагает отсутствие разрушений и недопустимых деформаций в условиях действия механических и химических факторов;
- технологическую пригодность, то есть последующую обработку и соединение с другими деталями;
- экономическую целесообразность, выражающуюся в умеренной стоимости и малом количестве дефицитных и стратегических материалов.
Сопловые лопатки первой ступени турбины работают при наиболее высоких температурах и под действием газовых сил подвергаются изгибу, поэтому важной характеристикой материала этих деталей является сопротивляемость ползучести. Напряжения изгиба в сопловых лопатках современных и перспективных газовых турбин достигают 100-130 Мпа. В охлаждаемых сопловых лопатках первых ступеней из-за большого градиента температуры в материалах возникают значительные термические напряжения, сравнимые с напряжениями от изгиба.
Кроме того, высокая температура рабочей среды, а также наличие в газе кислорода, серы, водяных паров, а при сжигании мазута и пятиокиси ванадия, вызывают коррозию металла, поэтому материал должен быть еще и коррозионно-стойким. Поэтому для сопловых лопаток мы выбираем сталь 31Х19Н9МВБТ.
Рабочие лопатки являются наиболее нагруженными деталями рабочего колеса турбины. Они подвергаются действию центробежных сил, вибрационным нагрузкам; усилиям, возникающим, вследствие различия коэффициентов расширения материалов лопаток и соприкасающегося диска, коррозии и эрозии от действия горячих газов, а также термическим напряжениям из-за разности температур в корне лопатки и на периферии. Работая длительное время в условиях высоких температур и напряжений, материал лопаток должен обладать высоким сопротивлением ползучести и усталости и малой чувствительностью к концентрации напряжений. Последние возникают в местах переходов, вырезов, отверстий и т.п. Поэтому для рабочих лопаток мы выбираем сталь ХН65КНВЮТ.
Диски и роторы турбин, так же как и рабочие лопатки, подвержены действию центробежных сил и температурных напряжений, однако наибольшую опасность представляют напряжения от центробежных сил собственно диска и рабочих лопаток. Температурные напряжения по своей величине значительно меньше, а при хороших пластических свойствах металла дисков они снимаются под влиянием небольших пластических деформаций. Поэтому выбираем сталь 25Х1М1Ф.
Список литературы
1. Скубачевский Г.С. Авиационные газотурбинные двигатели. Конструкция и расчет деталей. - М.: Машиностроение, 1974.
2. Лапин Ю.Д., Карышев А.К. Расчет осевой газовой турбины. Материалы газовых турбин. - М.: Издательство МГТУ им. Н.Э.Баумана, 2002.
3. Казанджан П.К., Тихонов Н.Д., Янко А.К. Теория авиационных двигателей. - М.: Машиностроение, 1983.
4. Курс лекций «Теория и расчет газовых турбин»
Похожие работы
-
по Термодинамике
1 ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УТИЛИЗАЦИОННОГО ПАРОГЕНЕРАТОРА (УПГ), РАСЧЕТ ЦИКЛА И ПОКАЗАТЕЛЕЙ ПАРОТУРБИННОГО БЛОКА В СОСТАВЕ КОГЕНЕРАЦИОННОЙ ЭНЕРГОУСТАНОВКИ
-
Расчет газотурбинного двигателя при постоянном давлении
ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ Кафедра Прикладной механики Дисциплина: «Тепловые двигатели»
-
Тепловые испытания паровых турбин и турбинного оборудования
Тепловые испытания паровых турбин и турбинного оборудования В последние годы по линии знергосбережения повысилось внимание к нормативам расходов топлива для предприятий, вырабатывающих тепло- и электроэнергию, поэтому для генерирующих предприятий фактические показатели экономичности теплоэнергетического оборудования приобретают важное значение.
-
Расчет ступени газовой турбины
Исходные данные к расчёту ступени газовой турбины: Ро,Мпа То,К Со,мс Р2,Мпа G,кгс n,обмин 0,339 0,261 7800 Ро.Мпа - давление газа перед ступенью. То,К - температура газов перед ступенью.
-
Выбор оптимального варианта повышения мощности турбообводом в составе энергоблока ВВЭР-640
Санкт-Петербургский Государственный Технический Университет Энергомашиностроительный факультет Кафедра Атомных и тепловых энергетических установок
-
Тепловой расчет паровой турбины
Методы теплового расчета турбины, выполняемого с целью определения основных размеров и характеристик проточной части: числа и диаметров ступеней, высот их сопловых и рабочих решеток и типов профилей, КПД ступеней, отдельных цилиндров и турбины в целом.
-
Расчет на прочность деталей газовых турбин
КУРСОВОЙ ПРОЕКТ по ГТУ Содержание 1. Расчет закрутки последней ступени 2. Профилирование рабочей лопатки по результатам расчета закрутки 3. Расчет геометрических характеристик профиля турбинной лопатки
-
Тепловой расчет паровой турбины Т-100-130
Министерство Образования РФ Иркутский Государственный Технический Университет Кафедра теплоэнергетики Пояснительная записка к курсовому проекту по теме
-
Расчет противодавленческой турбины с двухвенечной регулирующей ступенью
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный технологический университет растительных полимеров
-
Процесс работы газотурбинного двигателя
Проектирование рабочего процесса газотурбинных двигателей и особенности газодинамического расчета узлов: компрессора и турбины. Элементы термогазодинамического расчета двухвального термореактивного двигателя. Компрессоры высокого и низкого давления.