Название: Построение диаграмм
Вид работы: реферат
Рубрика: Информатика
Размер файла: 67.15 Kb
Скачать файл: referat.me-131585.docx
Краткое описание работы: Пусть имеется последовательность положительных действительных чисел a1, a2, ..., an, обозначающая результаты каких-либо измерений (например, высоты вершин гор над уровнем моря, площади государств, средние оценки учеников класса и т.д.). Требуется построить визуализированное представление этой последовательности с целью сравнения полученных результатов.
Построение диаграмм
Пусть имеется последовательность положительных действительных чисел a1, a2, ..., an, обозначающая результаты каких-либо измерений (например, высоты вершин гор над уровнем моря, площади государств, средние оценки учеников класса и т.д.). Требуется построить визуализированное представление этой последовательности с целью сравнения полученных результатов. В таких случаях используют диаграммы.
1. Круговые диаграммы
В круговой диаграмме каждому элементу последовательности соответствует сектор, градусная мера которого пропорциональна величине элемента.
Для построения круговой диаграммы необходимо просуммировать все элементы последовательности, после чего найти отношения каждого из элементов к полученной сумме (так будет вычислено, какую часть круга нужно поставить в соответствие данной величине, — т.е. рассчитываются доли круга, приходящиеся на данную величину, если весь круг принять равным 1). Все эти расчеты можно представить формулами . Затем эти относительные величины переводятся в градусы:
, после чего можно приступать к построению диаграммы.
Алгоритм в этом случае будет следующим:
вычислить сумму элементов последовательности;
найти величину сектора, соответствующего каждой величине;
построить все секторы в графическом режиме (в результате должен получиться полный круг). Желательно каждый сектор строить своим цветом, или использовать разную штриховку, если секторы одноцветные.
Программа построения круговой диаграммы по этому алгоритму представлена ниже:
{Круговая диаграмма (с) А.П. Шестаков, 2001}
program Kr_D;
Uses Graph;
Var a, S : Real; I : Byte; G, M : Integer;
Xc, Yc, R : Integer; {координаты центра круга и его радиус}
F : Text; {файл содержит данные для построения диаграммы}
Alpha : Integer; {угол, соответствующий очередной величине}
SAngle : Integer; Stroka : String;
Begin
Assign(F, '1.dat'); Reset(F);
S := 0; {сумма элементов последовательности}
While Not Eof(F) Do
begin Readln(F, a); S := S + a end;
reset(f); G := detect; M := 0;
initgraph(G, M, ''); Xc := GetMaxX Div 2; Yc := GetMaxY Div 2;
R := 100; SAngle := 0; i := 1;
While Not Eof(f) Do begin
Readln(F, a); Alpha := round(A / S * 360); {вычислениеугла}
setcolor(i mod 16 + 1); setfillstyle(1, i mod 16 + 1);
{построение сектора, соответствующего величине}
sector(Xc, Yc, SAngle, SAngle + Alpha, R, R);
SAngle := SAngle + Alpha; i:= i + 1;
{укажем, какому цвету какая величина соответствует}
bar(Xc+200, Yc-250+(i-1)*20, Xc+220, Yc-250+(i-1)*20+15);
str(a:8:2, stroka);
outtextxy(Xc + 230, Yc — 250 + 5 + (i — 1) * 20, stroka) end;
readln; close(F); closegraph End.
Результат работы программы для указанного на рисунке набора чисел:
2. Столбчатые диаграммы
Для построения диаграммы выделим на экране прямоугольную область с координатами соответственно верхнего левого угла (Xlv, Ylv) и правого нижнего (Xpn, Ypn). Высота столбца диаграммы, соответствующего максимальному элементу последовательности, будет совпадать с высотой прямоугольника. Ширина столбца будет зависеть от количества элементов последовательности: чем больше компонент, тем меньшей будет ширина. Таким образом, для построения диаграммы нужно определить количество компонентов последовательности и максимальный элемент последовательности. Высота vi очередного столбца диаграммы на экране будет определяться формулой где xmax — максимальный элемент последовательности, xi — очередной элемент последовательности.
Алгоритм построения диаграммы следующий:
определить количество элементов последовательности и её максимальный элемент;
согласно указанной формуле построить столбцы диаграммы. Их ширина на экране может быть рассчитана по формуле где n — количество элементов последовательности.
Программа построения столбчатой диаграммы по этому алгоритму представлена ниже:
{Столбчатая диаграмма (с) А.П. Шестаков, 2001}
program Stol_D;
Uses Graph;
Var a, xmax : Real; I, n : Byte; G, M : Integer;
F : Text; {файл содержит данные для построения диаграммы}
Stroka : String;
Xlv, Ylv, Xpn, Ypn : Integer; {координаты окна вывода диаграммы}
Begin
Assign(F, '1.dat'); Reset(F);
if not eof(f) then begin readln(f, xmax); n:= 1 end else n := 0;
While Not Eof(F) Do
begin Readln(F, a); if a > xmax then xmax := a; n := n + 1 end;
reset(f); G := detect; M := 0;
initgraph(G, M, ''); Xlv := 50; Ylv := 50; Xpn:= GetMaxX-100; Ypn:= GetMaxY-50;
i:= 0; {номер столбца}
While Not Eof(f) Do
begin
Readln(F, a);
setcolor(i mod 16 + 1); setfillstyle(1, i mod 16 + 1);
{очереднойстолбец}
bar(round(Xlv+i*(Xpn-Xlv)/n), Ypn,
round(Xlv+(i+1)*(Xpn-Xlv)/n), round(Ypn-(Ypn-Ylv)/xmax*a));
i:= i + 1;
{укажем, какому цвету какая величина соответствует}
bar(getMaxx-70, 50+(i-1)*20, getMaxx-50, 50+(i-1)*20+15);
str(a:8:2, stroka);
outtextxy(getMaxx-40, 50+(i-1)*20+8, stroka);
end;
readln; close(F); closegraph
End.
Результат работы программы для указанного на рисунке набора чисел:
Для лучшего восприятия диаграммы было бы целесообразно построить вертикальную ось с разметкой по ней, что в данной программе отсутствует.
3. Линейные диаграммы
При построении линейных диаграмм каждой величине соответствует точка, расположенная на определённой высоте относительно начала отсчёта (высота рассчитывается так же, как и при построении столбчатых диаграмм), все точки соединяются линиями. В результате получается ломаная. Такого рода диаграммы чаще всего строя в тех случаях, когда необходимо визуализировать динамику изменения величин.
Программа аналогична программе построения столбчатых диаграмм и приведена ниже.
{Линейная диаграмма (с) А.П. Шестаков, 2001}
program Stol_D;
Uses Graph;
Var a, xmax : Real; I, n : Byte; G, M : Integer;
F : Text; {файл содержит данные для построения диаграммы}
Stroka : String; Yn, Yk : Integer;
Xlv, Ylv, Xpn, Ypn : Integer; {координаты окна вывода диаграммы}
Begin
Assign(F, '1.dat'); Reset(F);
if not eof(f) then begin readln(f, xmax); n:= 1 end else n := 0;
While Not Eof(F) Do
begin Readln(F, a); if a > xmax then xmax := a; n := n + 1 end;
reset(f); G := detect; M := 0;
initgraph(G, M, ''); Xlv := 50; Ylv := 50; Xpn:= GetMaxX-100; Ypn:= GetMaxY-50;
line(xlv, ylv, xlv, ypn); line(xlv, ypn, xpn, ypn);
i:= 0; {номер точки}
readln(f, a);
Yn := round(Ypn-(Ypn-Ylv)/xmax*a);
str(a:5:1, stroka);
outtextxy(round(Xlv+i*(Xpn-Xlv)/n)-20, Ypn+20, stroka);
While Not Eof(f) Do
begin
setcolor(i mod 16 + 1); setfillstyle(1, i mod 16 + 1);
{укажем, какому цвету какая величина соответствует}
Readln(F, a);
Yk := round(Ypn-(Ypn-Ylv)/xmax*a);
{очереднаялиния}
line(round(Xlv+i*(Xpn-Xlv)/n), Yn,
round(Xlv+(i+1)*(Xpn-Xlv)/n), Yk);
i:= i + 1;
str(a:5:1, stroka);
outtextxy(round(Xlv+i*(Xpn-Xlv)/n)-20, Ypn+20, stroka);
Yn := Yk; {запоминаем положение очередной точки}
end;
readln; close(F); closegraph
End.
Результат работы программы для указанного на рисунке набора чисел:
Все представленные здесь программы могут быть объединены в одну программу с общим меню, где пользователю предоставляется возможность выбрать вид диаграммы.
Похожие работы
-
Использование диаграмм и графиков в табличном процессоре Microsoft Office Excel
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ПЕНЗЕНСКАЯ ГОСУДАРСТВЕННАЯ ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ КАФЕДРА «ИНФОРМАЦИОННЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ» Лабораторная работа №8
-
Интерполяция 3
Интерполяция Интерполя́ция интерполи́рование вычислительной математике способ нахождения промежуточных значений величины по имеющемуся
-
Модели теории графов для выделения контуров по градиентному изображению
Модели теории графов для выделения контуров по градиентному изображению. А.Г. Броневич, Н.С. Зюзерова 1.Введение Важным этапом обработки реальных изображений является выделение контурного (скелетного) изображения. Это оказывается необходимым при распознавании образов и анализе сцен, поскольку контуры являются, как правило, наиболее информативными и неизбыточными признаками исходного изображения.
-
Отделение корней. Графический и аналитический методы отделения корней
Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования Владимирский государственный университет
-
Контроль и диагностика систем
Московский Авиационный Институт (государственный технический университет) КУРСОВАЯ РАБОТА ПО КУРСУ: «кОНТРОЛЬ И ДИАГНОСТИКА СИСТЕМ» ВАРИАНТ №7 Москва 2009 г.
-
Построение диаграмм в Excel
Excel Лабораторная работа № 4 Лабораторная работа № 4 Построение диаграмм В EXCEL С помощью Microsoft EXCEL можно создавать сложные диаграммы для данных рабочего листа. EXCEL представляет 9 типов плоских диаграмм и 6 объемных типов диаграмм. Диаграмма может находиться на рабочем листе вместе с исходными данными или на отдельном листе диаграмм, который является частью книги.
-
Использование современной компьютерной техники и программного обеспечения при исследовании химик
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный горный институт им. Г.В. Плеханова
-
Однофакторный дисперсионный анализ
В общем виде эту задачу можно поставить следующим образом: пусть мы наблюдаем m независимых нормально распределенных случайных величин (1) предполагая, что все они имеют одинаковую дисперсию
-
Использование электронных таблиц в обработке данных. Формулы. Абсолютная адресация. Диаграммы
Лабораторная работа 12. Использование электронных таблиц в обработке данных. Формулы. Абсолютная адресация. Диаграммы Цель: знакомство с программой Microsoft Excel, ее органами управления и основными возможностями.
-
Системы счисления Составление алгоритмов
Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования