Referat.me

Название: Математические методы и модели в принятии решений

Вид работы: реферат

Рубрика: Информатика

Размер файла: 17.71 Kb

Скачать файл: referat.me-132212.docx

Краткое описание работы: Введение! Цель моделирования — процесс исследования объекта на разных уровнях — от качественного до точного количественного, по мере осуществления сбора информации и развития модели.

Математические методы и модели в принятии решений

Математические методы и модели в принятии решений

Введение!

Цель моделирования — процесс исследования объекта на разных уровнях — от качественного до точного количественного, по мере осуществления сбора информации и развития модели.

В математической области методы и модели понимаются как комплексные категории, которые в себя включают:

1. методы в принятии решений;

2. методы исследования операций;

3. экономико-математический методы;

4. методы экономической кибернетики;

5. методы оптимального управления;

6. прикладную математику в экономике;

7. прикладную математику в организации производства.

Этот список не является полным, что свидетельствует о широком диапазоне математических методов и моделей. В различных источниках, содержание которых касается представленной тематики, математические модели и методы рассматриваются в тех или иных сочетаниях.

Практическое доказательство обозначенной мысли возможно на примере известного метода «теории вероятностей», который представлен в рамках математических моделей широким классом и включает в себя такие понятия, как «вероятность», «случайное событие», «случайная величина», «математическое ожидание (среднее значение) случайной величины», «дисперсия (рассеяние)» и т.п. В конце XIX — начале XX вв. выделяется новый объект, который представляет собой коммутированную систему телефоной связи, подразумевающую такие понятия, как «заявка на соединение», «отказ», «время ожидания соединения», «коммутация» и тому подобные элеметы.

Математическая теоретико-вероятностная модель процессов в коммутированных телефонных сетях была образована в 20-х гг. в результате соединения представленного метода и объекта. Автором подобной операции стал А.К. Эрланг. В качестве примера существующих понятий данной модели можно отметить:

1. «поток заявок»;

2. «среднее время ожидания»;

3. «средняя длина очереди на обслуживание»;

4. «дисперсию времени ожидания»;

5. «вероятность отказа».

Последующее развитие этого научного направления продемонстрировало результативность понятийных категорий симбиозной модели, выявило ее масштабную конструктивную функцию.

Данная модель в процессе своего развития трансформировалась в метод исследования сложных систем. В качестве примера можно выделить «теорию массового обслуживания», категориальный аппарат которой перестал восприниматься как неотъемлемая составляющая телефонных сетей. Терминология и понятийная база приобрели общетеоретический характер. Так, организация новых моделей может осуществляться посредством применения теории массового обслуживания к таким объектам, как производственные процессы, операционные системы, ЭВМ, транспортные потоки и т.п.

В результате очевидным представляется вывод, что метод является в полной мере сформированным в случае развития однородной совокупности моделей. Степень исследования объекта же напрямую зависит от количества разработанных моделей объекта. Двойственная сущность модели формирует, в свою очередь, дуализм категориального аппарата моделирования, который интегрирует в себя понятия общие или специфичные, образованные от «метода» и «объекта», соответственно.

Иными словами, методы, модели, объекты организуют непрерывную последовательность, которая подразумевает наличие различных групп моделей, образующихся в соответствии со спецификой своего происхождения и применяемости. Среди таких групп можно выделить:

1. модели, которые предполагают взаимодействие раннее разработанных методов и новых объектов;

2. модели, впервые созданные с целью осуществления описания конкретного объекта, при этом новые модели могут быть применимы и по отношению к другим объектам.

Линейное программирование — математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах n -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Целочисленное программирование — разновидность линейного программирования, подразумевающая, что искомые значения должны быть целыми числами.

Раздел математического программирования, в котором изучаются методы нахождения экстремумов функций в пространстве параметров, где все или некоторые переменные являются целыми числами.

Простейший метод решения задачи целочисленного программирования — сведение ее к задаче линейного программирования с проверкой результата на целочисленность.

Потоки в сетях

Деятельность современного общества тесно связана с разного рода сетями — возьмите, к примеру, транспорт, коммуникации, распределение товаров и тому подобное. Поэтому математический анализ таких сетей стал предметом фундаментальной важности.

ГЕОМЕТРИЧЕСКОЕ ПРОГРАММИРОВАНИЕ — раздел математического программирования , изучает определенный класс оптимизационных задач , встречающихся главным образом в инженерно-экономических расчетах. Основное требование метода состоит в том, чтобы все технические характеристики проектируемых объектов были выражены количественно в виде зависимостей от регулируемых параметров . Геометрическим такой вид программирования назван потому, что в нем эффективно используется геометрическое среднее и ряд таких геометрических понятий, как векторные пространства , векторы , ортогональность и др.

НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ — раздел математического программирования , изучающий методы решения экстремальных задач с нелинейной целевой функцией и (или) областью допустимых решений , определенной нелинейными ограничениями .

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ — 1. Основное понятие математической теории оптимальных процессов (принадлежащей разделу математики под тем же названием — О. у.); означает выбор таких управляющих параметров , которые обеспечивали бы наилучшее с точки зрения заданного критерия протекание процесса или, иначе, наилучшее поведение системы , ее развитие к цели по оптимальной траектории . Эти управляющие параметры обычно рассматриваются как функции времени , что означает возможность их изменения по ходу процесса для выбора на каждом этапе их наилучших (оптимальных) значений.

ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ — раздел исследования операций , который рассматривает разнообразные процессы в экономике, а также в телефонной связи, здравоохранении и других областях, как процессы обслуживания, т. е. удовлетворения каких-то запросов, заказов (напр., обслуживание кораблей в порту — их разгрузка и погрузка, обслуживание токарей в инструментальной кладовой цеха — выдача им резцов, обслуживание клиентов в прачечной — стирка белья и т. д.).

ТЕОРИЯ ПОЛЕЗНОСТИ — теоретическое направление в экономической науке, развитое представителями австрийской школы в XIX—XX вв., основанное на базисном объективном понятии "полезность", воспринимаемом как удовольствие, удовлетворение, получаемое человеком в результате потребления благ. Основной принцип теории полезности — закон убывающей предельной полезности , согласно которому приращение полезности, получаемое от одной добавленной единицы блага, непрерывно убывает.

Теория принятия решений — междисциплинарная область исследования, представляющая интерес для практиков и связанная с математикой, статистикой, экономикой, философией, менеджментом и психологией; изучает, как реальные лица, принимающие решение, выбирают решения и насколько оптимальные решения могут быть приняты.

Теория игр — математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу — в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Имитационное моделирование — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Динамическое программирование – это раздел математики, посвящённый теории и методам решения многошаговых задач оптимального управления.

Похожие работы

  • Информационное моделирование и его виды

    Министерство образования и науки Республики Казахстан Восточно-Казахстанский государственный технический университет им. Д.Серикбаева Кафедра «Математическое и компьютерное моделирование»

  • Введение в проблему искусственного интеллекта

    Введение в проблем у искусственного интеллекта Понятие систем ИИ, их классификация области применения и перспективы развития. ИИ - это научно-исследовательское направление создающие модели и соответствующие программные средства, позволяющие с помощью ЭВМ решать задачи творческого, не вычислительного характера, которые в процессе решения требуют обращения к семантике (проблеме смысла).

  • Информационное моделирование

    Реферат на тему: "Информационное моделирование" 1. Моделирование как метод решения прикладных задач С точки зрения информатики, решение любой производственной или научной задачи описывается следующей технологической цепочкой: «реальный объект - модель - алгоритм - программа - результаты - реальный объект».

  • Компьютерное моделирование в геологии

    ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ХАКАССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

  • Базы данных в системах управления и экономических системах

    Содержание Введение 3 1. Базы данных в экономических системах 4 2. Организация системы управления базами данных 6 3. Вопросы разработки и внедрения баз данных 7

  • Информационная технология 2

    Информационная технология — процесс, использующий совокупность средств и методов сбора, накопления, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления (информационного продукта). Этот процесс состоит из четко регламентированной последовательности выполнения операций, действий, этапов разной степени сложности над данными, хранящимися на компьютерах.

  • Прикладной пакет Microsoft Office

    ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Международный институт «ИНФО - Рутения» (МИИР) КУРСОВАЯ РАБОТА по дисциплине: «Информатика» тема: «Прикладной пакет

  • Компьютерное моделирование и его особенности

    1. 2.Эссе по теме: «» Введение Начнем с определения слова моделирование. Моделирование – процесс построения и использования модели. Под моделью понимают такой материальный или абстрактный объект, который в процессе изучения заменяет объект-оригинал, сохраняя его свойства, важные для данного исследования.

  • Моделирование бизнеса средства и методы

    Моделирование бизнеса: средства и методы Валерий Чеботарев PC Week Разработка интегрированных систем управления предприятием (ИСУП), так же, как и любых автоматизированных информационных систем предприятия, начинается со сбора и анализа информации о функциях, процессах, документообороте, структуре предприятия.

  • Классификация информационных систем 3

    Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Рязанский государственный университет имени С.А. Есенина»