Название: Белые карлики, нейтронные звезды, черные дыры
Вид работы: доклад
Рубрика: Математика
Размер файла: 14.06 Kb
Скачать файл: referat.me-214518.docx
Краткое описание работы: Белые карлики - конечная стадия звездной эволюции после исчерпания термоядерных источников энергии звезд средней и малой массы. Они представляют собой очень плотные горячие звезды малых размеров из вырожденного газа.
Белые карлики, нейтронные звезды, черные дыры
Белые карлики - конечная стадия звездной эволюции после исчерпания термоядерных источников энергии звезд средней и малой массы. Они представляют собой очень плотные горячие звезды малых размеров из вырожденного газа. Ядерные реакции внутри белого карлика не идут, а свечение происходит за счет медленного остывания. Масса белых карликов не может превышать некоторого значения - это так называемый предел Чандрасекара, равны примерно 1,4 массы Солнца.
Солнце в будущем - это белый карлик.
Грандиозное, но чрезвычайно редкое небесное явление, которое запечатлено во многих исторических летописях разных народов - это вспышка сверхновой звезды, которую иногда было видно даже днем.
Установлено, что в среднем в каждой галактике вспышка сверхновой происходит раз в несколько десятилетий. В максимуме своего блеска она может быть столь же яркой, как остальные сотни миллиардов звезд галактики вместе взятые.
Как впервые предположили в 30-е годы XX века Вальтер Бааде и Фриц Цвикки, в результате взрыва сверхновой образуется сверхплотная нейтронная звезда. Эта гипотеза подтвердилась после открытия в 60-х годах пульсара - быстровращающейся нейтронной звезды в центре Крабовидной туманности в созвездии Тельца; он возник на месте вспышки сверхновой 1054 года.
Нейтронная звезда - это конечное состояние эволюции звезд массой более десяти солнечных. Она представляет собой очень экзотический космический объект. Ее радиус - всего 10-20 км, а масса в 1,5-2 раза больше солнечной. Максимально возможная масса нейтронной звезды носит название предела Оппенгеймера-Волкова, который в любом случае не больше трех масс Солнца. Если масса нейтронной звезды превосходит это предельное значение, никакое давление вещества не может противодействовать силам гравитации. Звезда становится неустойчивой и быстро коллапсирует. Так образуется черная дыра.
Черная дыра - космический объект, который образуется при неограниченном гравитационном сжатии (гравитационном коллапсе) массивных космических тел. Существование этих объектов предсказывает общая теория относительности. Сам термин "черная дыра" введен в науку американским физиком Джоном Уилером в 1968 г. для обозначения сколлапсировавшей звезды.
Черные дыры образуются в результате коллапса гигантских нейтронных звезд массой более 3 масс Солнца. При сжатии их гравитационное поле уплотняется все сильнее и сильнее. Наконец звезда сжимается до такой степени, что свет уже не может преодолеть ее притяжения. Радиус, до которого должна сжаться звезда, чтобы превратиться в черную дыру, называется гравитационным радиусом. Для массивных звезд он составляет несколько десятков километров.
Поскольку черные дыры не светят, то единственный путь судить о них - это наблюдать воздействие их гравитационного поля на другие тела.
Имеются косвенные доказательства существования черных дыр более чем в 10 тесных двойных рентгеновских звездах. В пользу этого говорят, во-первых, отсутствие известных проявлений твердой поверхности, характерных для рентгеновского пульсара или рентгеновского барстера, и, во-вторых, большая масса невидимого компонента двойной системы (больше 3 масс Солнца). Один из наиболее вероятных кандидатов в черные дыры - это ярчайший источник рентгеновских лучей в созвездии Лебедя - Лебедь Х-1.
Похожие работы
-
Магнитные звёзды
Характерной особенностью "магнитных звёзд" является гладкость и статичность их магнитных полей, в отличие от, например, Солнца, чьё магнитное поле не слишком сильно, дискретно и постоянно изменяется.
-
Блеск звезд
Глядя на звездное небо, можно заметить, что звезды различны по своей яркости, или, как говорят астрономы, по своему видимому блеску. Наиболее яркие звезды условились называть звездами 1-й звездной величины.
-
Далекая Вселенная. Образование и эволюция звёздных скоплений
Вследствие большей плотности скоплений каждая звезда в них испытывает за время существования скопления, по крайней мере, несколько тесных сближений и множество далеких сближений с другими звездами.
-
Возникновение галактик и звезд
Существует теория, что в предыдущем состоянии галактики, и может быть даже Метагалактика, состояли из какого-то сверхплотного «дозвездного вещества». Оно обладает способностью самопроизвольно дробиться и образует галактики.
-
Новые звезды
Название новые звезды сохранилось с древних времен за звездами, которые считались действительно новыми. Накопленные коллекции фотографий показали, что на самом деле так называемая новая звезда в действительности существовала и раньше, но внезапно вспыхнула, вследствие чего блеск ее за короткое время увеличился в десятки тысяч раз.
-
Аккреция
Аккреция (лат. accretio — «приращение, увеличение» ← accrescere — «увеличиваться, расширяться») — процесс падения вещества на космическое тело из окружающего пространства.
-
Белые карлики
После "выгорания" термоядерного топлива в звезде, масса которой сравнима с массой Солнца, в центральной ее части (ядро) плотность вещества становиться настолько высокой, что свойства газа кардинально меняются.
-
Черные дыры
Черная дыра является порождением тяготения. Поэтому предысторию открытия черных дыр можно начать со времени И. Ньютона, открывшего закон всемирного тяготения.
-
Размеры звезд. Плотность их вещества.
Размеры звезд. Плотность их вещества. Рассмотрим на простом примере как можно сравнить размеры звезд одинаковой температуры, например Солнца и Капеллы. Эти звезды имеют одинаковые спектры, цвет и температуру, о светимость Капеллы в 120 раз превышает светимость Солнца. Так как при одинаковой температуре яркость единицы поверхности звезд тоже одинакова, то, значит, поверхность Капеллы больше, чем Солнца в 120 раз, а диаметр и радиус ее больше солнечных в корень квадратный из 120, что приближенно равно 11 раз.
-
Рождение звезды
Когда плотность молекулярного облака (или отдельной его части) становится настолько большой, что гравитация преодолевает газовое давление, облако начинает неудержимо коллапсировать.