Название: Волшебный мир Пуанкаре
Вид работы: доклад
Рубрика: Математика
Размер файла: 19.57 Kb
Скачать файл: referat.me-214957.docx
Краткое описание работы: Многие профессиональные математики выделяли геометрию среди остальных разделов математики, считая её подобно механике экспериментальной наукой.
Волшебный мир Пуанкаре
Люди привыкли, что геометрия имеет дело с нашим реальным пространством и что пространство описывается евклидовой геометрией. Многие профессиональные математики выделяли геометрию среди остальных разделов математики, считая её подобно механике экспериментальной наукой, но они же понимали, что, во-первых, возможны логически стройные геометрические построения ,за которыми не стоит физическая реальность, во-вторых, не столь бесспорно, что в астрономических масштабах в нашем мире царит геометрия Евклида. Новый этап в развитии неевклидовой геометрии наступил, когда появились первые её модели. Одну из самых интересных моделей придумал Анри Пуанкаре, занимаясь чисто аналитическими вопросами. Рассказу о модели Пуанкаре и посвящена эта заметка.
Рассмотрим круг. Пусть его населяют существа, которые твердо уверены, что их мир, то есть круг, неограничен. Этот круг устроен так, что когда они двигаются от центра круга к его границам, длина их шага = 1/(n2), где n - число шагов, которые они уже сделали. Тогда нетрудно видеть, что человечек никогда не дойдет до границ круга.
Докажем, что расстояние, пройденное человечком на любом шаге, меньше двух. Ясно, что длина шага= 1/(n2)<1/(n(n-1))= 1/n-1 – 1/n (*) Тогда расстояние R = 1/4 + 1/9 + ... + 1/n2 по неравенству (*) 1/4+ 1/9+...+1/n2 < 1-1/2 + 1/2-1/3 +.... 1/(n-1) -1/n Нетрудно видеть, что все слагаемые кроме 1 и 1/n сократятся. Тогда получим : 1+ 1/4 + 1/9+...+1/n2 < 2 – (1/n) Таким образом, никто из обитателей круга не сможет доказать, что их мир ограничен, и они верят, что справедлива аксиома Евклида: «Через точку вне прямой проходит единственная прямая, параллельная данной». Но в круге роль прямых для обитателей этого круга играют отрезки, соединяющие точки окружности. Но очевидно, что через любую точку вне отрезка можно провести сколько угодно отрезков, не пересекающих данный (см. рисунок).
Аналогичный пример можно построить с шаром в пространстве. Но ничто не мешает нам поставить себя на место обитателей круга Пуанкаре. Тогда многие аксиомы Евклида становятся не столь интуитивно понятными. Стоит задуматься, нужно ли так бескомпромиссно доверять?
Похожие работы
-
Анри Пуанкаре: невероятная связь между Эйнштейном и Пикассо
Пуанкаре способствовал взрыву искрометного творчества в искусстве и науке, которое стало лейтмотивом XX-го века.
-
Анри Пуанкаре
ПУАНКАРЕ АНРИ. (29.04.1854-17.07.1912) Французский математик, физик, астроном и философ, член Парижской Академии Наук (1887), и более чем 35 иностранных академий, в том числе иностранный почетный член Петербургской Академии Наук. Родился в Нанси (Лотарингия). Начальное образование получил дома.
-
Евклид
Реферат по математике ученицы 7 «Б» класса ВЮ лицея Берестовской Дарьи Евклид Евклид – древнегреческий математик (III века до н.э.) работал в Александрии и написал несколько трудов, которые стали основой для образования и использовались около 2200 лет.
-
Аксиоматический метод в геометрии
Аксиоматический метод появился в Древней Греции, а сейчас применяется во всех теоретических науках, прежде всего в математике.
-
Известные математики Софья Васильевна Ковалвская
Реферат по математике Известные математики* (Софья Васильевна Ковалвская) Ивановой Екатерины ученицы 8 в класса Таллиннской Тынисмяевской Реальной школы
-
Созвездия, которых сейчас нет. Путешествие по страницам старинных звездных карт
Человечество с давних времен начало группировать яркие звезды в запоминающиеся фигуры. Так, древние греки, научное наследие которых легло в основу астрономии, на небе выделяли 48 созвездий.
-
Геометрия
Геометрия — важный раздел математики. Ее возникновение уходит в глубь тысячелетий и связано прежде всего с развитием ремесел, культуры, искусств, с трудовой деятельностью человека и наблюдением окружающего мира.
-
Математика и математическое образование в современном мире
Математическое сообщество несет свою долю ответственности за повсеместно наблюдаемое давление со стороны правительств и общества в целом, направленное на уничтожение математической культуры как части культурного багажа каждого человека.
-
Эрлангенская программа: прежде и теперь
Переворот в геометрической науке, произведенный Феликсом Кляйном в конце 19 века, часто и справедливо сравнивают с реформой Евклида в античной геометрии.
-
Устойчивость солнечной системы
Как только выяснилось, что движение планет подчиняется законам механики твердого тела, а их взаимодействие – закону всемирного тяготения, так сразу же возник вопрос о будущем Солнечной системы.