Название: Задачи по финансовой математике 3
Вид работы: реферат
Рубрика: Математика
Размер файла: 26.81 Kb
Скачать файл: referat.me-215479.docx
Краткое описание работы: ВАРИАНТ 1. Определить число лет. Необходимых для увеличения первоначального капитала в 5 раз, применяя простые и сложные проценты по ставке 15 % годовых.
Задачи по финансовой математике 3
ВАРИАНТ 1.
1. .
2. Определить число лет. Необходимых для увеличения первоначального капитала в 5 раз, применяя простые и сложные проценты по ставке 15 % годовых.
Сначала определим число лет при начислении простых процентов.
Формула простых процентов:
Pn = P(1+ni), где
Pn – наращенная сумма,
i - ставка процента,
P – изначальная сумма,
n - число периодов начисления.
Составим уравнение.
Первоначальный капитал увеличится в 5 раз, следовательно Pn = 5P
5P = P(1 + n*0,15)
1 + n*0,15 = 5
0,15n = 4
n = 26,6 т.е. примерно через 26,5 лет капитал увеличится в 5 раз при простых процентах.
Формула сложных процентов:
Pt = P(1 + i)t , где
t - количество периодов наращения,
i - ставка процента,
P – изначальная сумма,
Pt – наращенная сумма.
Первоначальный капитал увеличится в 5 раз, следовательно Pn = 5P
5P = P(1 + 0,15)t
(1,15)t = 5
t = 11,5 т.е. через 11,5 лет капитал увеличится в 5 раз при сложных процентах
3. Вексель с обязательством 15 тыс. руб. учитывается банком за 3 месяца до погашения с дисконтом 3 тыс. руб. в пользу банка. Определить величину ставки процента.
Формула расчета дисконта банка:
D = d*S*n, где
d – годовая учетная ставка,
n – срок до даты учета,
S – наращенная сумма.
d = D/ S*n
d = 3 000 / 15 000 * 3/12 = 0,8 т.е. 80 %
Другой способ:
P = S (1 - dt ), где
d – банковский дисконт,
t – временная база,
12 = 15 (1 – d*0,25)
d*0,25 = 0,2
d = 0,8
4. Вексель погашается через 3 года за 5 тыс. руб. Определить дисконтную цену векселя по простым и сложным процентам.
По-видимому, в условии пропущена ставка процентов. Примем ставку процентов за 10% годовых.
Тогда:
P = S(1 - dt)
P = 5 000 (1 – 0,1*5) = 2500 – при простых процентах
P = S (1 - d )n
P = 5000 (1 – 0,1)5 = 2952 – при сложных процентах
5. Допустим, что отцу Федору из романа И.Ильфа и Е. Петрова “ двенадцать стульев” срочно надо выкупить стулья у инженера Бруна. Хотя любезная попадья Катерина Александровна и выслала ему телеграфом в Батум необходимую сумму денег, но, увы, наличных денег для совершения покупки у отца Федора в данный момент нет. А стулья, как он прозорливо считает, в любой момент могут достаться конкурентам – Остапу Бендеру и кисе Воробьянинову. Поэтому он решается взять в местном коммерческом банке кредит на один день в сумме 100000 руб. при трехмесячной ставке 9 %, в надежде на то, что на следующий день он непременно получит высланные попадьей деньги. Какую величину процента должен заплатить отец Федор банку?
Ставка i = 9%*4 = 36% годовых
1 день — срок кредита, т. к., согласно банковской практике, дата выдачи кредита и дата его возврата считаются за один день;
Тогда:
Pn = P(1+ni)
Pn = 100 000 (1 + 0,36*1/360) = 100100 руб. – должен будет вернуть
Размер процентов за операцию:
I = 100100 – 100 000 = 100 руб.
6. Пусть во вклад с капитализацией процентов помещены 10 млн. руб. определить наращение суммы вклада через 2 года, если проценты начисляют ежеквартально из расчета 80 % годовых.
Простые проценты:
Pn = P(1+ni) для простых процентов неважно, сколько раз в год начисляют проценты, поэтому ежеквартальное начисление не учитываем (итоговая сумма будет та же)
Pn = 10 000 000 ( 1 + 2*0,8) = 26000000 руб.
Сложные проценты:
Pt = P(1 + i)t , процентная ставка за квартал t = 80/4 = 20%
Pt = 10 000 000 (1 + 0,2)2*4 = 42 998 169,6 руб.
7. По муниципальной облигации номиналом 10 тыс. руб., выпущенной на 2,5 года, предусмотрен следующий порядок начисления процентов: первый год- 60 %, в каждом последующем полугодии ставка повышается на 5 %.
Требуется:
1) определить наращенную стоимость облигации по простой процентной и учетной ставкам;
Наращенная стоимость по простой процентной ставке:
Pn = P(1+ni)
Pn = 10 000 (1+1*0,6 + 0,5*0,65 + 0,5*0,7 + 0,5*0,75) = 26500 руб.
Наращенная стоимость по простой учетной ставке:
S = P/(1-d T )
S1год = 10 000/(1 - 0,6*1) = 25000 руб.
Проценты I 1год = 25 000 – 10 000 = 15 000 руб.
S3полугод = 10 000/(1 - 0,65*0,5) = 14 815 руб. (сумма за 3 полугодие)
I 3полугод = 14 815 – 10 000 = 4 815
S4полугод = 10 000/(1 - 0,7*0,5) = 15385 руб.
I 4полугод = 15385 – 10000 = 5385
S5полугод = 10 000/(1 - 0,75*0,5) = 16 000
I 5полугод = 16 000 – 10 000 = 6000 руб.
Суммарная наращенная стоимость по учетной ставке:
S = 15 000 + 4815 + 5385 + 6000 = 31200 руб.
2) составить план наращения первоначальной стоимости по простым процентам;
Период начисления | Метод: простые проценты | Метод: учетная ставка |
1 год | 10 000(1 + 1*0,6) = 16000 | 15 000 |
1,5 года | 10 000(0,5*0,65) + 16000 = 19250 | 19815 |
2 года | 10 000(0,5*0,7) + 19250 = 22750 | 25200 |
2,5 года | 10 000(0,5*0,75) + 22750 = 26500 | 31200 |
3) рассчитать наращенную стоимость облигации по сложной процентной и учетной ставкам;
При начислении сложных процентов применяется формула
S = P(1+i1 t1 )·(1+ i2 t2 )·(1+ i3 t3 )·(1+ in tn )
S = 10 000 * (1 + 0,6*1)*(1 + 0,65*0,5)*(1 + 0,7*0,5)*(1 + 0,75*0,5) = 39 352 руб.
Сложная учетная ставка:
S =
S1год = 10 000 / (1 – 0,6)1 = 25000 руб.
S3полугод = 25 000 / (1 – 0,65)0,5 = 42258 руб.
S4полугод = 42258/ (1 – 0,7)0,5 = 77152 руб.
S5полугод = 77152 / (1 – 0,75)0,5 = 154304 руб.
4) составить план наращения первоначальной стоимости по сложным процентам;
Период начисления | Метод: сложные проценты | Метод: сложная учетная ставка |
1 год | 16 000 | 25000 |
1,5 года | 21200 | 42258 |
2 года | 28620 | 77152 |
2,5 года | 39352 | 154304 |
5) построить график наращения стоимости по простым и сложным процентам;
6) проанализировать доходность вариантов наращения стоимости с позиций кредитора и заемщика.
После первого года простая учетная ставка и сложные учетная ставка и проценты дают примерно одинаковый результат, поэтому на этом этапе разницы между этими методами начисления процентов для кредитора и заемщика почти нет. Уже на это этапе резко выделается сложная учетная ставка, которая выгода кредитору и невыгодна заемщику. Разница между методами начисления процентов начинается и усиливается после 1,5 года.
Из графика ясно, что наиболее выгодным для кредитора является вариант сложной учетной ставки. Затем идут сложные проценты, простая учетная ставка и наименее выгодными являются простые проценты.
Для заемщика ситуация противоположна – наиболее выгодным вариантом являются простые проценты, наименее выгодна сложная учетная ставка.
Кредитору выгоднее выдавать ссуду под простой дисконт, а не под простой процент. Простой дисконт (d) представляет собой процентный доход, который вычитается из ссуды в момент ее выдачи. Чтобы убедиться в этом, достаточно сравнить наращенную сумму, которую надо вернуть кредитору при условии выдачи кредита в одинаковой сумме, но под простой процент — в одном случае и под простой дисконт — в другом.
Похожие работы
-
Наращение и дисконтирование. Потоки платежей. Ренты
Факультет дистанционного обучения Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Кафедра АСУ Лабораторная работа № 1
-
Финансовая математика 3
«Финансовая математика» «Финансовая математика» Оглавление Предисловие Часть 1. Теоретические основы финансово-коммерческих вычислений Глава 1. Общие понятия
-
Программа оптимизации рискового портфеля
Введение. На финансовом рынке обращается множество ценных бумаг: государственные ценные бумаги, муниципальные облигации, корпоративные акции и т.д. Если у участника рынка есть свободные деньги, то их можно отнести в банк и получать проценты или купить на них ценные бумаги и получать дополнительный доход.
-
Некоторые приложения финансовой математики
Некоторые приложения финансовой математики. Конверсия валюты и начисление процентов. Рассмотрим совмещение конверсии (обмена) валюты и наращения простых процентов, сравним результаты от непосредственного размещения имеющихся денежных средств в депозиты или после предварительного обмена на другую валюту.
-
Эффективность проекта NPV
Задание. Предприятие реализует инвестиционный проект, требующий 200 млн. рублей капитальных вложений. Освоение инвестиций происходит в течении 3 лет. В первый год осваивается 25% инвестиций, во второй 30% инвестиций, в третий 45% инвестиций.
-
Оптимальная комбинация ресурсов
КОНТРОЛЬНАЯ РАБОТА №1 по дисциплине «Экономико-математические методы и модели» на тему «Оптимальная комбинация ресурсов» Выполнила: студентка гр. О-060500-31
-
Проценты и их применение
Обзор истории происхождения процентов, применение процентных вычислений в задачах. Решение задач по формуле сложных процентов разными способами, нахождение процентов от числа. Применение процентов в жизни: исследование бюджета семьи и посещения кружков.
-
Задачи по финансовой математике 2
Содержание Задание 1. 2 1. Инфляция и ее показатели 2 2. Виды инфляции 2 3. Причины инфляции 3 4. Последствия инфляции 3 5. Ожидаемая и непредвиденная инфляция 4
-
Эффективная годовая процентная ставка, ее значение в принятии финансовых решений
Проценты - это доход от инвестиций производственного или финансового характера, либо от предоставления капитала в долг в различных формах. Процентная ставка - величина, характеризующая интенсивность начисления процентов. Процентная ставка может быть рассчитана отношением приращения исходной суммы к базовой величине.
-
Математика в химии и экономике
Цель настоящего реферата – изучение методов решения таких задач, решение нескольких задач на изменение концентраций и на начисление простых и сложных процентов.