Название: СМО с отказами
Вид работы: реферат
Рубрика: Математика
Размер файла: 22.91 Kb
Скачать файл: referat.me-216320.docx
Краткое описание работы: СМО с отказами (задача Эрланга) Рассматривается N-канальная СМО с отказами: λпотерь λобслуживания υ υ υ λ Любая заявка может быть обслужена любым свободным каналом. Если все каналы заняты, заявка немедленно получает отказ в обслуживании и покидает систему (теряется).
СМО с отказами
СМО с отказами (задача Эрланга)
Рассматривается N-канальная СМО с отказами:
λпотерь
λобслуживания
υ
υ
υ
λ
ОА1
ОА2
ОАn
G
Любая заявка может быть обслужена любым свободным каналом. Если все каналы заняты, заявка немедленно получает отказ в обслуживании и покидает систему (теряется). Интенсивности входных и выходных потоков:
Считаем, что в этой системе имеются следующие потоки событий:
1) поступление заявок на вход СМО из источника заявок G;
2) обслуживание заявок в каналах.
Будем считать, что первый и второй потоки событий являются простейшими потоками с экспоненциальными законами распределения. Интервал поступления и обслуживания заявок соответственно имеют следующие характеристики:
1) интенсивность потока поступающих заявок характеризуется λ
2) интенсивность обслуживания одним каналом:
- мат.ожидание длительности обслуживания
Т.о. входной поток с интенсивностью λ и поток обслуживания с интенсивностью µ распределены по экспоненциальному закону и следовательно данные потоки являются простейшими, а сами процессы в системе Марковскими. Представим граф схему переходов для этого случая:
Состояния СМО в данном случае нумеруются по числу заявок, находящихся в СМО (в силу отсутствия очереди состояния, в котором находится система, совпадает с числом занятых каналов)
S0 - все каналы свободны, система свободна
S1 - занят один канал
Sk - заняты k каналов, остальные (n-k) свободны
Sn - заняты все n каналов
µ
2µ
(n-1)µ
nµ
λ
λ
λ
λ
λ
λ
S0
S1
S2
Sk
Sn-1
Sn
Из состояния Si-1 всегда с интенсивностью входного потока λ система переходит в следующее состояние Si, т.е. в данном случае будет заняе еще один канал и интенсивность перехода в следующее состояние равно интенсивности входного потока λ. Интенсивность обратного перехода возрастает с ростом числа параллельно работающих каналов. Чем больше их работает, тем интенсивнее процесс их освобождения. Для простейших потоков имеем:
Данная схема называется схемой гибели и размножения. Такое название происходит от того, что связаны соседние состояния. Математический аппарат - это Марковский процесс, с дискретными состояниями и непрерывным временем. Для заданной СМО матрица интенсивностей Λ имеет вид:
Пользуясь матрицей Λ запишем уравнения, которые позволяют рассчитать вероятности пребывания системы в каждом из указанных состояний. Распределение вероятностей P0,P1,…,Pn по состояниям S0,…,Sn определяется как решение системы дифференциальных уравнений.
P’(t)=P(t)Λ с начальными условиями:
P0(0)=1
Pi(0)=0, i=1,n;
Эти уравнения называются уравнениями Эрланга. Вероятности Рi характеризуют среднюю загрузку системы, в частности, Pn - это вероятность получения отказа в обслуживании, т.е. вероятность того, что все каналы заняты и все поступающие заявки будут потеряны. Тогда q=1-Pn - это вероятность обслуживания.
Зная эти вероятности, можно рассчитать различные характеристики эффективности системы.
А - среднее число заявок, обслуживаемых СМО в единицу времени или абсолютная пропускная способность СМО
Q - относительная пропускная способность СМО или вероятность обслуживания поступившей заявки
Похожие работы
-
Математическое моделирование и оптимизация системы массового обслуживания
Теория массового обслуживания – область прикладной математики, анализирующая процессы в системах производства, в которых однородные события повторяются многократно. Определение параметров системы массового обслуживания при неизменных характеристиках.
-
Вопросы по курсу «МАТЕМАТИКА» для студентов 2 курса дневного отделения
Вопросы к экзамену в ВУЗе по высшей математике.
-
Математические методы исследования экономики системы массового обслуживания
Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Кафедра "Высшей математики" Расчётно-графическая работа по теме:
-
Математическая модель распределения информации
Математическая модель распределения информации Математическая модель системы распределения информации включает следующие три основных элемента: входящий поток вызовов (требований на обслуживание), схему системы распределения информации, дисциплину обслуживания потока вызовов.
-
Система массового обслуживания с ограниченным временем ожидания
Понятие системы массового обслуживания, ее сущность и особенности. Теория массового обслуживания как один из разделов теории вероятностей, рассматриваемые вопросы. Понятие и характеристика случайного процесса, его виды и модели. Обслуживание с ожиданием.
-
Транспортная задача
Юридический техникум Рассмотрено и одобрено ПЦК г. Кропоткин программирования Председатель ПЦК Покалицына О.В. План чтения лекции по учебной дисциплине
-
Математическое моделирование систем и процессов
Задания на контрольную работу. 1. Произвести моделирование случайной величины в ЕХСЕ варианту методом Монте-Карло. С помощью функции заполнить таблицу требуемым количеством случайных величин, равномерно распределенных в интервале (0, 1).
-
Марковская и полумарковская модели открытой сети с тремя узлами
Исследование стационарного распределения сетей массового обслуживания и доказательство инвариантности. Уравнения глобального равновесия и понятие эргодичности. Доказательство инвариантности стационарного распределения, а также определение его вида.
-
Имитационное моделирование системы массового обслуживания
Составление имитационной модели и расчет показателей эффективности системы массового обслуживания по заданны параметрам. Сравнение показателей эффективности с полученными путем численного решения уравнений Колмогорова для вероятностей состояний системы.
-
Инвариантность стационарного распределения трехузловой сети массового обслуживания
Математическая теория массового обслуживания как раздел теории случайных процессов. Системы массового обслуживания заявок, поступающих через промежутки времени. Открытая марковская сеть, ее немарковский случай, нахождение стационарных вероятностей.