Название: Анализ Фурье
Вид работы: доклад
Рубрика: Математика
Размер файла: 14.15 Kb
Скачать файл: referat.me-216456.docx
Краткое описание работы: Жозеф Фурье очень хотел описать в математических терминах, как тепло проходит сквозь твердые предметы. Возможно, его интерес к теплу вспыхнул, когда он находился в Северной Африке.
Анализ Фурье
Любая волна сложной формы может быть представлена как сумма простых волн
Жозеф Фурье очень хотел описать в математических терминах, как тепло проходит сквозь твердые предметы. Возможно, его интерес к теплу вспыхнул, когда он находился в Северной Африке: Фурье сопровождал Наполеона во французской экспедиции в Египет и прожил там некоторое время. Чтобы достичь своей цели, Фурье должен был разработать новые математические методы. Результаты его исследований были опубликованы в 1822 году в работе «Аналитическая теория тепла» (Theorie analytique de la chaleur), где он рассказал, как анализировать сложные физические проблемы путем разложения их на ряд более простых.
Метод анализа был основан на так называемых рядах Фурье. В соответствии с принципом интерференции ряд начинается с разложения сложной формы на простые — например, изменение земной поверхности объясняется землетрясением, изменения орбиты кометы — влиянием притяжения нескольких планет, изменение потока тепла — его прохождением сквозь препятствие неправильной формы из теплоизолирующего материала. Фурье показал, что сложная форма волны может быть представлена как сумма простых волн. Как правило, уравнения, описывающие классические системы, легко решаются для каждой из этих простых волн. Далее Фурье показал, как эти простые решения можно суммировать, чтобы получить решение всей сложной задачи в целом. (Говоря языком математики, ряд Фурье — это метод представления функции суммой гармоник — синусоид и косинусоид, поэтому анализ Фурье был известен также под названием «гармонический анализ».)
До появления компьютеров в середине ХХ столетия методы Фурье и им подобные были лучшим оружием в научном арсенале при наступлениях на сложности природы. Со времени появления комплексных методов Фурье ученые смогли использовать их для решения уже не только простых задач, которые можно решить прямым применением законов движеия Ньютона и других фундаментальных уравнений. Многие великие достижения ньютоновской науки в XIX веке фактически были бы невозможны без использования методов, впервые предложенных Фурье. В дальнейшем эти методы применялись в решении задач в различных областях — от астрономии до машиностроения.
***
Жан-БатистЖозефФУРЬЕ
Jean-Baptiste Joseph Fourier, 1768–1830
Французский математик. Родился в Осере; в возрасте девяти лет остался сиротой. Уже в юном возрасте проявил способности к математике. Фурье получил образование в церковной школе и военном училище, затем работал преподавателем математики. На протяжении всей жизни активно занимался политикой; был арестован в 1794 году за защиту жертв террора. После смерти Робеспьера был выпущен из тюрьмы; принимал участие в создании знаменитой Политехнической школы (Ecole Polytechnique) в Париже; его положение послужило ему плацдармом для продвижения при режиме Наполеона. Сопровождал Наполеона в Египет, был назначен губернатором Нижнего Египта. По возвращении во Францию в 1801 году был назначен губернатором одной из провинций. В 1822 году стал постоянным секретарем Французской академии наук — влиятельная должность в научном мире Франции.
Похожие работы
-
Дискретное преобразование Фурье 2
Санкт-Петербургский государственный университет информационных технологий, механики и оптики (Технический университет) Гуманитарный факультет
-
Шпаргалка по Математике 4
наз. сходящимся, если сходимости ЧР: // Если ряд сходится, то 3. Интегральный ПК сх.Р: 5. Признак Коши: 7. Признаки Абеля и Дирихле для ЧР: Признак Абеля:
-
Ряды и интеграл Фурье
Определение и свойства рядов и интеграла Фурье. Методы разложения периодических функций в ряд Фурье. Примеры решения задач.
-
Преобразование Фурье
В основе преобразования Фурье (ПФ) лежит чрезвычайно простая, но исключительно плодотворная идея – почти любую периодическую функцию можно представить суммой отдельных гармонических составляющих.
-
Преобразование Фурье
Kalmiik-forever Глава I Преобразование Фурье. §1. Класс Шварца. Преобразование Фурье отображает класс Шварца на себя. Определение . Следующее множество комплекснозначных функций действительного переменного называется классом Шварца.
-
Образование протопланетного диска
В работе показана общая схема рождения звезды и ее планетной системы. Представленная гипотеза начального развития системы.
-
Жозеф Луи Лагранж
Лагранж, Жозеф Луи (Lagrange, Joseph Louis) (1736–1813), французский математик и механик.
-
Ряды Фурье и их приложения 2
Реферат: "Ряды Фурье и их приложения" Раздел: Рефераты по математике Министерство общего и профессионального образования Сочинский государственный университет туризма
-
Приложение интегрального и дифференциального исчисления к решению прикладных задач
Нахождение наибольшего и наименьшего значения (экстремумы) функции в замкнутой ограниченной области. Геометрический и симплексный метод составления плана выпуска продукции, разложение в ряд Фурье по синусам непериодической функции, её график и сумма.
-
Частотно-временной анализ сигналов
Плоскость частота-время для анализа и сравнения частотно-временных локализационных свойств различных базисов. Понятие базисных функций. Прямое и обратное преобразование Фурье. Сущность дискретного вейвлет-преобразования и примеры функции вейвлет.