Referat.me

Название: Программа вступительных экзаменов по математике в 2004г. (МГУ)

Вид работы: шпаргалка

Рубрика: Математика

Размер файла: 21.74 Kb

Скачать файл: referat.me-216602.docx

Краткое описание работы: Объем знаний и степень владения материалом, описанным в программе, соответствуют курсу математики средней школы. Поступающий может пользоваться всем арсеналом средств из этого курса, включая и начала анализа.

Программа вступительных экзаменов по математике в 2004г. (МГУ)

Настоящая программа состоит из трех разделов.

В первом разделе перечислены основные математические понятия, которыми должен владеть поступающий как на письменном, так и на устном экзамене.

Второй раздел представляет собой перечень вопросов теоретической части устного экзамена. При подготовке к письменному экзамену целесообразно познакомиться с формулировками утверждений этого раздела.

В третьем разделе указано, какие навыки и умения требуются от поступающего на письменном и устном экзаменах.

Объем знаний и степень владения материалом, описанным в программе, соответствуют курсу математики средней школы. Поступающий может пользоваться всем арсеналом средств из этого курса, включая и начала анализа. Однако для решения экзаменационных задач достаточно уверенного владения лишь теми понятиями и их свойствами, которые перечислены в настоящей программе. Объекты и факты, не изучаемые в общеобразовательной школе, также могут использоваться поступающими, но при условии, что он способен их пояснять и доказывать.

В связи с обилием учебников и регулярным их переизданием отдельные утверждения второго раздела могут в некоторых учебниках называться иначе, чем в программе, или формулироваться в виде задач, или вовсе отсутствовать. Такие случаи не освобождают поступающего от необходимости знать эти утверждения.

I. Основные понятия

Натуральные числа. Делимость. Простые и составные числа. Наибольший общий делитель и наименьшее общее кратное.

Целые, рациональные и действительные числа. Проценты. Модуль числа, степень, корень, арифметический корень, логарифм. Синус, косинус, тангенс, котангенс числа (угла). Арксинус, арккосинус, арктангенс, арккотангенс числа.

Числовые и буквенные выражения. Равенства и тождества.

Функция, ее область определения и область значений. Возрастание, убывание, периодичность, четность, нечетность. Наибольшее и наименьшее значения функции. График функции.

Линейная, квадратичная, степенная, показательная, логарифмическая, тригонометрические функции.

Уравнение, неравенства, система. Решения (корни) уравнения, неравенства, системы. Равносильность.

Арифметическая и геометрическая прогрессии.

Прямая на плоскости. Луч, отрезок, ломаная, угол.

Треугольник. Медиана, биссектриса, высота.

Выпуклый многоугольник. Квадрат, прямоугольник, параллелограмм, ромб, трапеция. Правильный многоугольник. Диагональ.

Окружность и круг. Радиус, хорда, диаметр, касательная, секущая. Дуга окружности и круговой сектор. Центральный и вписанные углы.

Прямая и плоскость в пространстве. Двугранный угол.

Многогранник. Куб, параллелепипед, призма, пирамида.

Цилиндр, конус, шар, сфера.

Равенство и подобие фигур. Симметрия.

Параллельность и перпендикулярность прямых, плоскостей. Скрещивающиеся прямые. Угол между прямыми, плоскостями, прямой и плоскостью.

Касание. Вписанные и описанные фигуры на плоскости и в пространстве. Сечение фигуры плоскостью.

Величина угла. Длина отрезка, окружности и дуги окружности. Площадь многоугольника, круга и кругового сектора. Площадь поверхности и объем многогранника, цилиндра, конуса, шара.

Координатная прямая. Числовые промежутки. Декартовы координаты на плоскости и в пространстве. Векторы.

II. Содержание теоретической части устного экзамена

Алгебра

Признаки делимости на 2, 3, 5, 9, 10.

Свойства числовых неравенств.

Формулы сокращенного умножения.

Свойства линейной функции и ее график.

Формула корней квадратного уравнения. Теорема о разложении квадратного трехчлена на линейные множители. Теорема Виета.

Свойства квадратичной функции и ее график.

Неравенство, связывающее среднее арифметическое и среднее геометрическое двух чисел. Неравенство для суммы двух взаимно обратных чисел.

Формулы общего члена и суммы n первых членов арифметической прогрессии.

Формулы общего члена и суммы n первых членов геометрической прогрессии.

Свойства степеней с натуральными и целыми показателями. Свойства арифметических корней n-й степени. Свойства степеней с рациональными показателями.

Свойства степенной функции с целым показателем и ее график.

Свойства показательной функции и ее график.

Основное логарифмическое тождество. Логарифмы произведения, степени, частного. Формула перехода к новому основанию.

Свойства логарифмической функции и ее график. Основное тригонометрическое тождество. Соотношения между тригонометрическими функциями одного и того же аргумента. Формулы приведения, сложения, двойного и половинного аргумента, суммы и разности тригонометрических функций. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование произведения синусов и косинусов в сумму. Преобразование выражения asin(x) + bcos(x) спомощью вспомогательного аргумента.

Формулы решений простейших тригонометрических уравнений.

Свойства тригонометрических функций и их графики.

Геометрия

Теоремы о параллельных прямых на плоскости.

Свойства вертикальных и смежных углов.

Свойства равнобедренного треугольника.

Признаки равенства треугольников.

Теорема о сумме внутренних углов треугольника. Теорема о внешнем угле треугольника. Свойства средней линии треугольника.

Теорема Фалеса. Признаки подобия треугольников.

Признаки равенства и подобия прямоугольных треугольников. Пропорциональность отрезков в прямоугольном треугольнике. Теорема Пифагора.

Свойство серединного перпендикуляра к отрезку. Свойство биссектрисы угла.

Теоремы о пересечении медиан, пересечении биссектрис и пересечении высот треугольника.

Свойство отрезков, на которые биссектриса треугольника делит противоположную сторону.

Свойство касательной к окружности. Равенство касательных, проведенных из одной точки к окружности. Теоремы о вписанных углах. Теорема об угле, образованном касательной и хордой. Теоремы об угле между двумя пересекающимися хордами и об угле между двумя секущими, выходящими из одной точки. Равенство произведений отрезков двух пересекающихся хорд. Равенство квадрата касательной произведению секущей на ее внешнюю часть.

Свойство четырехугольника, вписанного в окружность. Свойство четырехугольника, описанного около окружности.

Теорема об окружности, вписанной в треугольник. Теорема об окружности, описанной около треугольника.

Теоремы синусов и косинусов для треугольника.

Теорема о сумме внутренних углов выпуклого многоугольника.

Признаки параллелограмма. Свойства параллелограмма.

Свойства средней линии трапеции.

Формула для вычисления расстояния между двумя точками на координатной плоскости. Уравнение окружности.

Теоремы о параллельных прямых в пространстве. Признак параллельности прямой и плоскости. Признак параллельности плоскостей.

Признак перпендикулярности прямой и плоскости. Теорема об общем перпендикуляре к двум скрещивающимся прямым. Признак перпендикулярности плоскостей. Теорема о трех перпендикулярах.

III. Требования к поступающему

На экзамене по математике поступающий должен уметь:

выполнять (без калькулятора) действия над числами и числовыми выражениями; преобразовывать буквенные выражения; производить операции над векторами (сложение, умножение на число, скалярное произведение); переводить одни единицы измерения величин в другие;

сравнивать числа и находить их приближенные значения (без калькулятора); доказывать тождества и неравенства для буквенных выражений;

решать уравнения, неравенства, системы (втом числе спараметрами) иисследовать их решения;

исследовать функции; строить графики функций и множества точек на координатной плоскости, заданные уравнениями и неравенствами;

изображать геометрические фигуры на чертеже; делать дополнительные построения; строить сечения; исследовать взаимное расположение фигур; применять признаки равенства, подобия фигур и их принадлежности к тому или иному виду;

пользоваться свойствами чисел, векторов, функций и их графиков, свойствами арифметической и геометрической прогрессий;

пользоваться свойствами геометрических фигур, их характерных точек, линий и частей, свойствами равенства, подобия и взаимного расположения фигур;

пользоваться соотношениями и формулами, содержащими модули, степени, корни, логарифмические, тригонометрические выражения, величины углов, длины, площади, объемы;

составлять уравнения, неравенства и находить значения величин, исходя из условия задачи;

излагать и оформлять решение логически правильно, полно и последовательно, с необходимыми пояснениями.

На устном экзамене поступающий должен дополнительно уметь:

давать определения, формулировать и доказывать утверждения (формулы, соотношения, теоремы, признаки, свойстваит.п.), указанные во втором разделе настоящей программы;

анализировать формулировки утверждений и их доказательства;

решать задачи на построение циркулем, линейкой; находить геометрические места точек.

Похожие работы

  • О некоторых трудностях, возникающих при решении геометрических задач

    Учащийся должен ясно осознать, что же ему известно, как связаны между собой данные величины, какие следствия из них можно получить, что необходимо найти в задаче и что требуется для этого знать.

  • Соотношение между сторонами и углами прямоугольного треугольника

    Конспект урока по геометрии для 8 класса средней общеобразовательной школы Тема урока: Соотношение между сторонами и углами прямоугольного треугольника

  • Евклид

    Реферат по математике ученицы 7 «Б» класса ВЮ лицея Берестовской Дарьи Евклид Евклид – древнегреческий математик (III века до н.э.) работал в Александрии и написал несколько трудов, которые стали основой для образования и использовались около 2200 лет.

  • Известные математики Софья Васильевна Ковалвская

    Реферат по математике Известные математики* (Софья Васильевна Ковалвская) Ивановой Екатерины ученицы 8 в класса Таллиннской Тынисмяевской Реальной школы

  • Решение уравнений с параметрами

    Городская открытая научно – практическая конференция Тема: Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями

  • Иррациональные уравнения и неравенства

    МОУ СОШ «УК №20» Иррациональные уравнения и неравенства реферат по алгебре ученика 11 «В» класса Торосяна Левона Руководитель: Олейникова Р. М. Сочи 2002г.

  • Методика обучения по курсу математики за 3 года

    Работая над методической темой школы в течение трёх лет, МО учителей математики ставило перед собой следующие цели: Строить учебный процесс с учетом индивидуальности каждого ребёнка: его потребностей, мотивов, активности, интеллекта.

  • Решение уровней колебания струны методом характеристик

    Пономарева Т.Т., Комаров К В., Емельянов П. Ю. РЕШЕНИЕ УРАВНЕНИЙ КОЛЕБАНИЯ СТРУНЫ МЕТОДОМ ХАРАКТЕРИСТИК. Известно, что решение многих задач из курса физики напрямую зависит от владения аппаратом математического анализа. Так, например, и уравнения колебания струны, которые рассматриваются как в математическом анализе, так и в курсе физики, но с разными подходами к их решению.

  • Как учатся математике во Франции

    Франция - одна из ведущих математических держав, с давними математическими традициями и с процветающей ныне математической школой. Список великих французских математиков открывает в XV веке алгебраист Виет.

  • Подготовка к Единому государственному экзамену по математике через элективные курсы

    Министерство образования Республики Саха (Якутия) Саха Государственная Педагогическая Академия. Курсовая работа на тему: «Подготовка к Единому государственному экзамену по математике через элективные курсы»