Referat.me

Название: Дискретно-темпоральная модель вселенной

Вид работы: доклад

Рубрика: Математика

Размер файла: 15.3 Kb

Скачать файл: referat.me-217185.docx

Краткое описание работы: Физические концепции окружающего материального мира весьма условно можно разделить на два класса: эмпирико-феноменолоические и теоретико-математические. Первые не всегда позволяют распространить их на достаточно широкий круг явлений.

Дискретно-темпоральная модель вселенной

Олег Орестович Фейгин

Физические концепции окружающего материального мира весьма условно можно разделить на два класса: эмпирико-феноменолоические и теоретико-математические. Первые не всегда позволяют распространить их на достаточно широкий круг явлений, а вторые чаще всего перегружены чрезмерно усложненными математизированными рассуждениями. Настоящее сообщение, по своей филосовско-гносеологической форме, относится к некоторому промежуточному классу с относительно строгой аксиоматикой не противоречащей логико-интуитивному восприятию реальной Природы. При этом следует учитывать, что на современном этапе непредвзятое познание объективных закономерностей развития материальной Вселенной существенно осложняется беспрецедентной пропагандистской экспансией самых различных идеалистических религиозно-мистических учений и “метафизических исследований” весьма далеких от истиной науки. Между тем познание объективной реальности окружающего мира и понятийная ясность физических понятий была жизненным кредо целой плеяды выдающихся корифеев диалектико-материалистического естествознания ХХ века от Макса Планка до Ричарда Фейнмана.

Анализ возможности элементарного изложения корректно-вариабельной реинтерпретации одного из наиболее очевидных и противоречивых понятий современного естествознания – квантовой хронодинамической диcкретизации составляет отдельный и достаточно сложный вопрос методологии. Несмотря на то, что история парадоксального структурирования темпоральной основы окружающего мира восходит ещё к апориям Зенона, трудно указать другую область теоретической физики со столь малым количеством общепризнанных концептуальных решений. На этом фоне единственным “интеллектуальным прорывом” выглядит создание квантовой волновой механики в начале ХХ века. Исходя из подобной исторической ретроспективы развития модельной хронодинамики, представляется логически оправданным начать рассмотрение затронутых проблем ad ovo, c основополагающих принципов классической квантовой механики.

Базис величайшего завоевания человеческой мысли – аппарата современной теоретической физики состоит из удивительно малого количества краеугольных идей, среди которых выделяется своими удивительными самодостаточностью и оригинальностью концепция планковского кванта действия. Введение фундаментального принципа дискретизации потока энергии оказалось не только феноменально плодотворной физической идеей, но и открытием нового уровня модельного отражения окружающей реальности. В то же время, как заметил ещё великий Эйнштейн, в самом понятии вероятностной локализации квантовых микрообъектов, согласно решениям уравнения Шредингера, заключается целый ряд парадоксов так или иначе связанных с опосредствованием формальной логики причинно-следственных связей. Тем не менее уже в первичном варианте формальной модели атома Бора просматривались признаки темпоральной локализации для выделенных орбит связанных электронов. Хронодискретизация распространяется и на электронные квантово-орбитальные скачки в пределах разрешенных орбит, кроме того возникает временная дифференциация для квантового правила Планка.

Здесь вводятся принципиально новые модельные представления, связывающие атомарную частоту света с изменением энергии электрона в виде выделенных компонент “хроноквантов” и “энергоквантов”. Соответственно, основополагающее отношение: изменение энергии / частота будет равно произведению двух сомножителей he и ht.

В основе масштабно-размерного перехода предлагаемой схемы лежит реинтерпретация модельно-квантовой хронодискретизации как процесса генерации унитарных временных оболочек с мировыми линиями в линейном пространстве реальных физических событий. Своеобразие кинетики таких времяподобных мегамакропроцессов, заключается в наличии единой и строго непрерывной последовательности хроноквантовых континуумов, распространяющихся от начальной точки космологической сингулярности.

В отличии от подавляющего большинства современных проективных единых теорий поля, включая модификации классических построений Вейля и Калуза, рассматриваемая времяподобная модель может быть распространена и на транссингулярную область событий. В этом случае протосингулярное и субсингулярные состояния временных оболочек характеризуются различными пространственными симметриями, аналогично стандартному n-мерному формализму в (n+1)-мерном пространстве. Здесь сам процесс возникновения сингулярности Большого Взрыва будет сопоставим с перманентной эманацией энергии, выделяющейся при фазовых переходах пространственных метрик.

В заключение, следует отметить, что введенная схема дискретно-темпоральной модели пространства-времени имеет и более конкретную математическую форму из которой вытекают результаты, дающие весьма удовлетворительное сочетание с основными положениями стандартной релятивистской квантовой электродинамики.

Список литературы

Дирак П.А.М. Принципы квантовой механики. - М.: Физматгиз, 1960.

Дирак П.А.М. Лекции по квантовой теории поля. - М.: Мир, 1971.

Нейман фон Д. Математические основы квантовой механики. - М.: Наука, 1964.

Фудзита С. Введение в неравновесную квантовую статистическую механику. - М.: Мир, 1969.

Похожие работы

  • Роль прикладной математики в подготовке учителей математики и информатики

    В статье обсуждаются вопросы вузовской подготовки учителей математики и информатики по дисциплинам прикладной математики. Приводятся примеры изучения дисциплин прикладной математики с точки зрения особенностей конкретного профиля подготовки студентов.

  • Модельное мышление

    Эту статью я хочу посвятить мышлению. А точнее мышлению,которое позволит наиболее эффективно выполнять творческие задачи и задачи, которые возникают в процессе учебной деятельности.

  • Физика как источник теорем дифференциального исчисления

    Выявлено физическое происхождение условий некоторых математических теорем. Предложены элементы методики изложения основных теорем дифференциального исчисления, основанные на их взаимосвязи с физикой.

  • Гипотеза рождения вселенной из флуктуации в напряженной метрике пространства

    Модель “Большого Взрыва” естественна в наших представлениях и удобна для анализа с точки зрения современных научных знаний. Но, объясняя многие наблюдаемые факты, мы столкнулись с ответами, которые поставили нас в тупик.

  • Задание физического формата вселенной

    Расстояние между двумя объектами как бы далеко друг от друга они не находились, может быть выражено посредством отрезка. Применительно к данному аспекту, посредством отрезка состоящего из бесконечного количества точек.

  • Связь между массой и энергией

    Релятивистские эффекты. Симметрия пространства-времени, законы сохранения. Симметрия и процесс познания.

  • О нелинейной динамике

    Успехи механики в XVII-XIX веках были столь впечатляющими, что стало казаться возможным представить себе всю Вселенную как гигантскую динамическую систему.

  • Краткая история представления о Вселенной

    Данная работа дает описание о том, что собой представляет научная картина мира, так же дается краткое описание представлении о Вселенной (Наше представление о Вселенной, Рождение Вселенной и т.д.).

  • Расширяющаяся Вселенная

    Одной из основных концепций современного естествознания является учение о Вселенной как едином целом и о всей охваченной астрономическими наблюдениями области Вселенной (Метагалактике) как части целого - космология.

  • Модель горячей Вселенной

    Американский физик Георгий Антонович Гамов в 1946 году заложил основы одной из фундаментальных концепций современной космологии - модели "горячей Вселенной".