Referat.me

Название: Солнце

Вид работы: реферат

Рубрика: Математика

Размер файла: 61.6 Kb

Скачать файл: referat.me-217277.docx

Краткое описание работы: Общие сведения о Солнце. Спектр и химический состав Солнца.

Солнце

Солнце — типичная звезда, свойства которой изучены подробнее и лучше, чем других звезд, благодаря ее исключительной близости к Земле. В этой главе мы не только кратко рассмотрим имеющуюся информацию о Солнце, но и несколько подробнее те его свойства, которые характерны для всех звезд, что окажется весьма полезным при изучении их физической природы.

Общие сведения о Солнце

Солнце представляется кругом с резко очерченным краем (лимбом). Видимый радиус Солнца несколько меняется в течение года вследствие изменения расстояния Земли от Солнца, вызванного эллиптичностью земной орбиты.

Когда Земля в перигелии (начало января) видимый диаметр Солнца составляет 32’35”, а в афелии (начало июля) —33'31". На среднем расстоянии от Земли (1 а.е.) видимый радиус Солнца составляет 960", что соответствует линейному радиусу

Объем Солнца

а его масса

что дает среднюю плотность его вещества

Ускорение силы тяжести на поверхности Солнца

Наблюдения отдельных деталей на солнечном диске, а также измерения смещений спектральных линий в различных его точках говорят о движении солнечного вещества вокруг одного из солнечных диаметров, называемого осью вращения Солнца. Плоскость, проходящая через центр Солнца и перпендикулярная к оси вращения, называется плоскостью солнечного экватора. Она образует с плоскостью эклиптики угол в 7° 15' и пересекает поверхность Солнца по экватору. Угол между плоскостью экватора и радиусом, проведенным из центра Солнца в данную точку на его поверхности называется гелиографической широтой.

Вращение Солнца обладает важной особенностью: его угловая скорость w убывает по мере удаления от экватора и приближения к полюсам (см. рис.), так что в среднем w = 14°,4 - 2°,7 sin2В, где В — гелиографическая широта. В этой формуле угловая скорость w измеряется углом поворота за сутки.

Таким образом, различные зоны Солнца вращаются вокруг оси с различными периодами. Для точек экватора сидерический период составляет 25 суток, а вблизи полюсов он достигает 30 суток. Вследствие движения Земли вокруг Солнца его вращение представляется земному наблюдателю несколько замедленным: период вращения на экваторе составляет 27 суток, а у полюсов — 32 суток (синодический период вращения).

Поскольку Солнце вращается не как твердое тело, систему гелиографических координат нельзя жестко связать со всеми точками его поверхности. Условно гелиографические меридианы жестко связываются с точками, имеющими гелиографические широты В = ±16°. Для них сидерический период обращения составляет 25,38 суток, а синодический равен 27,28 суток. За начальный гелиографический меридиан принят тот, который 1 января 1854 г. в 0 часов по всемирному времени проходил через точку пересечения солнечного экватора с эклиптикой.

Спектр и химический состав Солнца

В видимой области излучение Солнца имеет непрерывный спектр, на фоне которого заметно несколько десятков тысяч темных линий поглощения (рис. 123), называемых фраунгоферовыми по имени австрийского физика Фраунгофера, впервые описавшего эти линии в 1814 г.

Наибольшей интенсивности непрерывный спектр достигает в синезеленой части спектра, у длин волн 4300-5000 A (см рис. 91). В обе стороны от максимума интенсивность солнечного излучения убывает.

Солнечный спектр далеко простирается в невидимые коротковолновую и длинноволновую области. Результаты внеатмосферных наблюдений спектра Солнца, полученные с ракет и искусственных спутников показывают, что до длин волн около 2000 A характер солнечного спектра такой же, как и в видимой области. Однако в более коротковолновой области он резко меняется: интенсивность непрерывного спектра быстро падает, г темные фраунгоферовы линии сменяются яркими эмиссионными (рис. 124).

Инфракрасная область солнечного спектра до 15 мк частично поглощается при прохождении сквозь земную атмосферу (рис. 125). Здесь расположены полосы молекулярного поглощения, принадлежащие в основном водяным парам, кислороду и углекислому газу. С Земли видны лишь некоторые участки солнечного спектра между этими полосами. Для длин волн, больших 15 мк, поглощение становится полным, и спектр Солнца доступен наблюдениям только с больших высот или внеатмосферными методами. Поглощение спектра Солнца молекулами воздуха продолжает оставаться сильным вплоть до области радиоволн длиной около 1 см, для которых земная атмосфера снова становится прозрачной. При этом обнаруживается, что в радиодиапазоне интенсивность солнечного спектра значительно больше, чем должна быть у тела с температурой 6000°. Убывание интенсивности радиоспектра Солнца с ростом длины волны в диапазоне метровых волн происходит так же, как и у абсолютно черного тела, имеющего температуру в миллион градусов. Другой важной особенностью радиоизлучения Солнца является его переменность, увеличивающаяся с ростом длины волны. Этим радиодиапазон существенно отличается от видимой области спектра, интенсивность которой исключительно постоянна. Подобной же переменностью обладает и рентгеновское излучение Солнца.

Важнейшей особенностью солнечного спектра от длины волны около 1600 A до инфракрасного диапазона является наличие темных фраунгоферовых линий поглощения. По длинам волн они в точности соответствуют линиям испускания разреженного светящегося газа. Появление их в поглощении в спектре солнечной атмосферы обусловлено значительно большей ее непрозрачностью к излучению в этих линиях, чем в соседнем непрерывном спектре. Тем самым в них мы наблюдаем излучение, исходящее от более наружных, а следовательно, и более холодных слоев. Дополнительное поглощение вызвано соответствующими атомами, которые возбуждаются за счет поглощенных квантов. Возбужденные атомы тут же переизлучают поглощенную энергию, причем одинаково по всем направлениям. Этот процесс называется атомным рассеянием. Он наиболее важен при образовании фраунгоферовых линий. Поэтому по их интенсивности можно судить о количестве рассеивающих атомов в атмосфере.

Самая сильная линия солнечного спектра находится в далекой ультрафиолетовой области. Это — резонансная линия водорода La (Лайман-альфа) с длиной волны 1216 A (рис. 124).

В видимой области наиболее интенсивны резонансные линии H и К ионизованного кальция (см. рис. 123). После них по интенсивности идут первые линии бальмеровской серии водорода Нa , Hb , Нg , затем резонансные линии натрия D1 и D2 , линии магния, железа, титана и других элементов (см. рис. 123). Остальные многочисленные линии отождествляются со спектрами примерно 70 известных химических элементов из таблицы Д.И. Менделеева и хорошо изученных в лаборатории. Присутствие этих линий в спектре Солнца свидетельствует о наличии в солнечной атмосфере соответствующих элементов. Таким путем установлено присутствие на Солнце водорода, гелия, азота, углерода, кислорода, магния, натрия, кальция, железа и многих других элементов.

Для количественного определения содержания различных химических элементов на Солнце необходимо применить метод, описанный в § 109. Результаты показывают, что вещество Солнца имеет тот же химический состав, что и другие космические объекты (кроме Земли и других планет), среднее содержание элементов в которых приведено в табл. 3.

Преобладающим элементом на Солнце является водород. По числу атомов его примерно в 10 раз больше, чем всех остальных элементов, и на его долю приходится около 70% всей массы Солнца (водород — самый легкий элемент).

Следующим по содержанию элементом является гелий — около 29% массы Солнца. На остальные элементы, вместе взятые, приходится чуть больше 1%. В некоторых случаях важно знать содержание элементов, обладающих определенными свойствами. Так, например, общее количество атомов металлов в атмосфере Солнца почти в 10 000 раз меньше, чем атомов водорода.

Похожие работы

  • Циклы Солнечной активности

    Солнечная активность - совокупность явлений наблюдаемых на Солнце… К этим явлениям относятся образование солнечных пятен, факелов, протуберанцев, флоккулов, волокон, Изменением интенсивности излучения во всех участках спектра.

  • Спектр, цвет и температура звезд

    Спектры звезд крайне разнообразны. Почти все они — спектры поглощения. Это результат поглощения света во внешних оболочках звезд. Изучение спектров позволяет определить химический состав атмосфер звезд.

  • Солнце

    Солнце — источник света, тепла и жизни в солнечной системе, но вместе с тем это ближайшая к нам звезда. Звезды мы видим как светящиеся точки даже в сильнейшие телескопы. Солнце — единственная звезда, у которой мы наблюдаем диск и различные явления на нем и можем их изучать.

  • Хромосфера Солнца

    В наружном слое фотосферы минимальная температура 4400°. Над ним находится атмосфера Солнца. Нижняя часть атмосферы называется хромосферой. В хромосфере температура постепенно растет до нескольких десятков тысяч градусов.

  • Послезавтра Земля в афелии

    Афелий — точка орбиты, наиболее удалённая от Солнца.

  • Применение спектрального анализа

    Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа света качественный и количественный химический состав светила, его температуру.

  • Астрономия

    Астрономия — наука о Вселенной и населяющих ее объектах: планетах, звездах и гигантских звездных системах — галактиках. Название этой древней науки, изучающей небесные тела, образовано от греческих слов "астрон" — звезда и "номос" — закон.

  • Солнце - наша звезда

    Солнечный спектр. Излучение абсолютно черного тела. Положение Солнца в нашей Галактике. Внутреннее строение Солнца. Химический состав Солнца.

  • Солнечная система

    Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Эти девять планет, обращающихся по огромным эллипсам вокруг Солнца, и образуют нашу Солнечную систему.

  • Галактика

    Понятие "галактика". Строение и состав галактик.