Referat.me

Название: Задачи Циолковского

Вид работы: шпаргалка

Рубрика: Математика

Размер файла: 67.77 Kb

Скачать файл: referat.me-218278.docx

Краткое описание работы: Рассмотрим две задачи Циолковского: прямолинейное дви­жение точки переменной массы под действием только одной реактивной силы и вертикальное движение точки вблизи Земли в однородном поле силы тяжести. Эти задачи впервые рассматривались К. Э. Циолковским.

Задачи Циолковского

Рассмотрим две задачи Циолковского: прямолинейное дви­жение точки переменной массы под действием только одной реактивной силы и вертикальное движение точки вблизи Земли в однородном поле силы тяжести. Эти задачи впервые рассматривались К. Э. Циолковским.

Первая задача Циолковского

Пусть точка переменной массы или ракета движется прямолинейно в таком называемом, по терминологии Циолков­ского, свободном пространстве под действием только одной реактивной силы. Считаем, что относительная скорость , отделения частиц постоянна и направлена в сторону, противо­положную скорости движения точки переменной массы (рис. 1). Тогда, проецируя на ось Ох , направленную по скорости движения точки, дифференциальное уравнение прямо­линейного движения точки переменной массы принимает вид

.

Разделяя переменные и беря интегралы от обеих частей, имеем

Рис. 1



,

где начальная скорость, направленная по реактивной силе; начальная масса точки.

Выполняя интегрирование, получаем

. (14)

Если в формулу (14) подставить значения величин, характеризующих конец горения, когда масса точки (ракеты) состоит только из массы несгоревшей части (массы приборов и корпуса ракеты) , то, обозначая через т массу топлива, для скорости движения v 1 в конце горения имеем

.

Вводя ч и с л о Ц и о л к о в с к о г о Z==m/ M p , получаем сле­дующую формулу Циолковского:

. (15)

Из формулы Циолковского следует, что скорость в конце горения не зависит от закона горения, т. е. закона изменения массы. Скорость в конце горения можно увеличить двумя путями. Одним из этих путей является увеличение относитель­ной скорости отделения частиц или для ракеты увеличения скорости истечения газа из сопла реактивного двигателя.

Современные химические топлива позволяют получать ско­рости истечения газа из сопла реактивного двигателя порядка 2...2,3 км/с. Создание ионного и фотонного двигателей позво­лит значительно увеличить эту скорость. Другой путь увеличе­ния скорости ракеты в конце горения связан с увеличением так называемой массовой, или весовой, отдачи ракеты, т. е. с увеличением числа Z, что достигается рациональной конструк­цией ракеты. Можно значительно увеличить массовую отдачу ракеты М 0 р путем применения м н о г о с т у п е н ч а т о й раке­ты, у которой после израсходования топлива первой ступени отбрасываются баки и двигатели от оставшейся части ракеты. Так происходит со всеми баками и двигателями уже отработав­ших ступеней ракеты. Это значительно повышает число Циолковского для каждой последующей ступени, так как уменьшается М р за счет отброшенных масс баков и двигателей.

Для определения уравнения движения точки переменной массы из (14) имеем

,

или, выполняя интегрирование после разделения переменных и считая х= 0 при t =0, получаем

. (16)

В теоретических работах по ракетодинамике обычно рас­сматривают два закона изменения массы: линейный и по­казательный. При линейном законе масса точки с течением времени изменяется так:

M=M 0 (1- a t), (17)

где a=const (a—удельный расход), а М 0— масса точки в начальный момент времени.

При показательном законе изменение массы

. (18)

Выполняя интегрирование в (16) при линейном законе изменения массы (17), получаем следующее уравнение движения:


. (19)


При показательном законе изменения массы (18) соответ­ственно

. (20)

Отметим, что при линейном законе изменения массы (17), если =const, секундный расход массы

(- dM /dt ) =aM 0 = const

и реактивная сила

= const.

При показательном законе секундный расход массы и ре­активная сила являются переменными, но ускорение точки переменной массы , вызванное действием на точку одной реактивной силы , является постоянным, т. е.

=const.

Похожие работы

  • Фигура Земли

    Фигура Земли в первом приближении представляет собой эллипсоид вращения, у которого экваториальный радиус (а) больше полярного (b) на 21389 км.

  • Потенциал силы тяжести

    Сила тяжести g, определяемая по формуле (IV.5), является векторной ве-личиной. Для решения многих задач гравиметрии удобно пользоваться скаляр-ной величиной V.

  • О затратах энергии на вращение планет

    Сила тяготения F, направленная к центру Земли, вызывает ускорение, под действием которого тело двигается в радиальном направлении. Хотя тело принимает участие в движении по касательной, тем не менее движение вдоль радиуса реально существует.

  • Закон всемирного тяготения

    Исаак Ньютон смог объяснить движение тел в космическом пространстве с помощью закона всемирного тяготения. Ньютон пришел к своей теории в результате многолетних исследований движения Луны и планет.

  • Открытие и движение комет

    Кометы представляют собой светила незначительной массы по сравнению с масштабом объектов солнечной системы.

  • Движение тел переменной массы. Основы теоретической космонавтики

    История космонавтики. Уравнение Мещерского. Уравнение Циолковского. Числовые характеристики одноступенчатой ракеты. Многоступенчатые ракеты.

  • Экзаменационные билеты по теоретической механике

    Билеты по разделу "Динамика".

  • Импульсная механика

    Импульсная механика рассматривает вопросы взаимодействия материальных тел, движущихся с ускорением и торможением, динамику вращения и кинематику переносного движения в силовых полях СП неинерциальных систем НС.

  • Энергия гравитационного поля

    Искривление пространства происходит не только в математическом, но и в физическом плане. Физическое искривление пространства представляет собой не что иное, как искривление материальной основы пространства (материи).

  • Сила трения и движение тела

    Некрашевич Е.А., Тарасова В.И., ЛИТ, Хабаровск Предлагаем вниманию читателей еще одну статью учителей Хабаровского Лицея информационных технологий. В ней речь пойдет об опыте работы по формированию у учащихся умения решать физические задачи.