Название: Дом и очаг, одежда и пища с точки зрения термодинамики
Вид работы: статья
Рубрика: Математика
Размер файла: 19.85 Kb
Скачать файл: referat.me-218815.docx
Краткое описание работы: Комфортные для человека условия (особенно в холодное время года) будут обеспечены только за счёт поддержания комнатной температуры воздуха (обычно 18-20 С° ).
Дом и очаг, одежда и пища с точки зрения термодинамики
А. Федорова, 11 класс МОУ Гимназия № 5 г. Юбилейный Московской обл.
Комфортные для человека условия (особенно в холодное время года) будут обеспечены только за счёт поддержания комнатной температуры воздуха (обычно 18-20 С° ).
Разумеется, сделать это можно лишь в замкнутом помещении, где наружные стены, пол и потолок имеют достаточно низкую теплопроводность. Окна, подобно коже человека, проводят тепло лучше и являются основным источником тепловых потерь в доме. Согласно управлению теплообмена Ньютона, скорость потока теплоты dQ/dt прямо пропорциональна площади окна S и разности температур ∆T между внутренними и внешними стёклами и обратно пропорциональна его толщине d:
здесь А − коэффициент теплоотдачи. Поэтому для удержания тепла полезнее увеличить толщину воздушной прослойкой (например, установить двойные оконные рамы), чем ставить толстые стёкла. Потери тепла необходимо восполнять за счёт его притока, например от радиаторов отопления. А как быть в сельских домах с печным или комнатным отоплением? В принципе здесь всё обстоит так же, лишь подача тепла происходит не в непрерывном, а в “импульсном” режиме. С точки зрения термодинамики интересно, на что именно расходуется теплота сгорания топлива (дров, угля и т.п). Оказывается, до 25-30% этой энергии идёт на обогрев улицы.
Дело в том, что воздух в негерметичном помещении нагревается при постоянном атмосферном объёме V=const и постоянном атмосферном давлении p=const. Если считать воздух идеальным газом, то процесс нагревания подчиняется уравнению состояния:
где CV − удельная теплоёмкость воздуха при постоянном объёме, − его средняя, или внутренняя, энергия, N − полное число молекул воздуха и T− его температура.
Поскольку в холодной комнате температура ниже, чем в натопленной (T1<T2) соответственно (N1>N2). Это означает, что в процессе нагревания комнаты часть её воздуха, расширялась, выходит через щели и печную трубу на улицу, унося с собой часть теплоты. При этом средняя энергия − теплового движения остающихся в комнате молекул не изменяется, так что мы в буквальном смысле отапливаем улицу (и это неизбежно, если мы не хотим резко поднять давление в комнате, загерметизировав её).
Уже давно было замечено сходство процессов обогрева жилища и питания самого человека (каждый знает, что, если долго не есть, начинаешь мёрзнуть даже летом). Но ведь людям нужно не только поддерживать температуру своего тела, но и производить полезную работу физическую или интеллектуальную. И то и другое требует затрат энергии, так что человек представляет в этом аналог тепловой машины, которую надо подпитывать извне.
Любой продукт питания, как и обычное топливо, содержит в качестве энергоносителей различные соединения углерода (жиры и углеводы). В живом организме они окисляются, соединяясь с О2.
Энергетическая ценность, как продуктов, так и топлива определяется в калориях. В организме происходит медленное, многоступенчатое “внутреннее” сгорание, в итоге исходный углерод превращается в углекислый газ СО2 и воду Н2О.
Долгое время оставались сомнения в применимости к этому случаю первого начала термодинамики. Не обладает ли живой организм какой-либо особой “жизненной силой”, нарушающей данный закон? На этот вопрос отрицательно ответили ещё в 1780 г. французские учёные Антуан Лавуазье и Пьер Лаплас. Они доказали, что тепловые эффекты при внешнем и “внутренним” сгорании абсолютно одинаковы.
Похожие работы
-
Свойства силиката магния с примесью хрома в пористом кремнии
Показана возможность простой технологии формирования соединения форстерита с примесными ионами Cr4+ в структурах на основе Si, представляющих интерес в связи с характерной люминесценцией в ближнем ИК-диапазоне.
-
Атмосфера земли и физические свойства воздуха
Атмосфера Земли. Это газовая оболочка нашей голубой планеты. Такое название всем известно. А почему голубая? Просто потому, что «голубая» ( а также синяя и фиолетовая ) составляющая солнечного света (спектра) наиболее хорошо рассеивается в атмосфере
-
Термодинамика биологических систем
Термодинамика является разделом физики, в котором изучают энергию, её передачу из одного места в другое и преобразование из одной формы в другую. Термодинамика основана на наиболее общих принципах, которые являются универсальными.
-
Дросселирование газов
Холодильные циклы без отдачи внешней работы (с дросселированием газа). Холодильные циклы с расширением сжатого газа в детандере.
-
Второе начало термодинамики
Общая характеристика и формулировка второго закона термодинамики. Понятие энтропии. Вселенная эволюционирует к хаосу?.
-
Второе начало (закон) термодинамики. Концепция энтропии и закон её возрастания
Основные принципы действия тепловых машин. Цикл Карно и теорема Карно. Необратимость тепловых процессов.
-
Первое начало термодинамики
Закон представляет формулировку принципа сохранения энергии для термодинамических систем.
-
Асимметричная информация на рынке
Введение При рассмотрении конкурентного рынка, мы создаем идеальную, абстрактную модель – модель совершенной конкуренции. В ней создаются лабораторные условия, которые обеспечивают «чистоту эксперимента». Модель совершенной конкуренции предполагает следующие условия: множество покупателей и продавцов на рынке, свободное перемещение ресурсов, отсутствие барьеров для вступления в отрасль, однородная и стандартная продукция и симметричность информации.
-
Низкочастотные колебательные моды в суперионном проводнике CU2-*SE
Селенид меди Cu2-*Se является фазой переменного состава с широкой областью гомогенности (0
-
Термодинамика и закон распределения
В работе рассматривается действие второго начала термодинамики и законов распределения.