Название: Изучение темы Преобразование графиков на уроке информатики
Вид работы: реферат
Рубрика: Педагогика
Размер файла: 1.68 Mb
Скачать файл: referat.me-288472.docx
Краткое описание работы: Преобразование графиков Цели Дать понятие преобразование графиков функций, рассмотреть четыре вида преобразований: параллельный перенос, растяжение и сжатие по оси Оу, растяжение и сжатие по оси Ох, графики функций, содержащих знак модуля.
Изучение темы Преобразование графиков на уроке информатики
Преобразование графиков
Цели
¨ Дать понятие преобразование графиков функций, рассмотреть четыре вида преобразований: параллельный перенос, растяжение и сжатие по оси Оу, растяжение и сжатие по оси Ох, графики функций, содержащих знак модуля.
¨ Повторить определение модуля, как он раскрывается.
¨ Закрепить знания и навыки работы в приложении MicrosoftExcel: задавать функцию, построение графиков.
План урока
1. Организационный момент
2. Объяснение нового материала
3. Самостоятельная работа учащихся в приложении MicrosoftExcel
4. Закрепление пройденного материала
5. Получение домашнего задания
6. Подведение итогов
Ход урока
1. Организационный момент
– Здравствуйте. Садитесь. (Ребята садятся за парты ).
– Ребята запишите в тетрадях сегодняшнее число, классная работа и тему урока «Преобразование графиков».
2. Объяснение нового материала (слайд №4)
Существует четыре вида преобразования графиков функции:
· параллельный перенос;
· растяжение и сжатие по оси Оу;
· растяжение и сжатие по оси Ох;
· графики функций, содержащих знак модуля.
Что бы наглядно увидеть, как преобразовывается график функции в зависимости от изменения ее задания мы рассмотрим в приложении MicrosoftExcel. (Ребята пересаживаются за компьютеры ).
3. Самостоятельная работа учащихся в приложении Microsoft Excel
Введите в ячейки: А1 – «х»; В1 – «f(x)»; C1 – «f(x)+6»; D1 – «f(x) – 10», в ячейках А2 – А12 задать диапазон значений переменной х [-5; 5] с шагом 1, в ячейку В2 ввести функцию .
Каждый ученик должен получить следующее
После чего, задается функция в столбцах С и D следующим образом
Далее под руководством учителя ребята строят графики функций в одной координатной плоскости
1 шаг – выбирают диапазон данных и вид графика
2 шаг – выбирают подписи по оси Х
3 шаг – после внимательного рассмотрения полученного результата, ребята выдвигают свои предположения какой вид из преобразований графиков задается как f(x)+k – параллельный перенос по оси ОУ:
– при k>0 перенос вверх на k;
– при k<0 перенос вниз на k.
Далее учитель предлагает изменить задания функций в ячейках С1 – «f (x+2)»; D1 – «f (x-3)». Соответственно меняются формулы в ячейках С2-С12 и D1-D12 следующим образом.
Далее ученики сроят графики функций в одной координатной плоскости
После чего ученики делают вывод, что если функция задается f (x+k) то это параллельный перенос по оси ОХ:
– при k>0 перенос влево на k;
– при k<0 перенос вправо на k.
2. Объяснение нового материала
А теперь учитель предлагает посмотреть несколько слайдов и самостоятельно сделать выводы, какие преобразования над графиками они пронаблюдали. Учитель на интерактивной доске показывает презентацию, содержащую следующие рисунки:
Рис. 1
Рис. 2
Рис. 3
Рис. 4.
После просмотра презентации ученики совместно с учителем обсуждают и делают следующие выводы:
¨ по первому и второму рисункам, выясняем какие преобразования происходят с графиком функции y=f(x), при изменении аргумента функции y=f(kx)
à при , график функции y=f(kx) получается из графика функции y=f(x) растяжением вдоль оси Ох;
à при , график функции y=f(kx) получается из графика функции y=f(x) сжатием вдоль оси Ох;
à при , график функции y=f(kx) получается из графика функции y=f(x) симметричным отображение относительно оси Оу.
¨ по третьему и четвертому рисункам, выясняем какие преобразования происходят с графиком функции y=f(x), при изменении значение функции y=kf(x)
à при , график функции y=kf(x) получается из графика функции y=f(x) сжатием вдоль оси Оу;
à при , график функции y=kf(x) получается из графика функции y=f(x) растяжением вдоль оси Оу;
à при , график функции y=kf(x) получается из графика функции y=f(x) симметричным отображение относительно оси Ох.
Записав, результаты в тетради ученики получают задание, которое выполняют на местах, а учитель контролирует и вызывает к доске у кого хорошо получается в тетради, для того что бы ученики сравнили свой результат с правильным.
4. Закрепление пройденного материала
Построить график функции а) ; б)
; в)
, если график функции
f
(
x
) изображен на рисунке
(слайд №11)
Рис. 5.
2. Объяснение нового материала
Ребята мы с вами рассмотрели только три вида преобразований графиков, сейчас просмотрим презентацию, в которой показано как преобразовывается график функции если:
1) значение функции взято по модулю (слайд №12);
2) аргумент функции взят по модулю (слайд №13);
3) значение функции и аргумент функции взяты по модулю (слайд №14).
Рис. 6
На рисунке 6, мы видим, что график функции совпадает с графиком функции
на тех промежутках, на которых
, а на тех промежутках, где
, график функции
получается из графика функции
с помощью симметрии относительно оси Ох.
Рис. 7
На рисунке 7, мы видим, что график функции совпадает с графиком функции
на тех промежутках, на которых
, а на тех промежутках, где
, график функции
получается из графика функции
с помощью симметрии относительно оси Оу.
Рис. 8
На рисунке 8, мы видим, что график функции совпадает с графиком функции
на тех промежутках, на которых
и
, а на тех промежутках, где
, график функции
получается из графика функции
с помощью симметрии относительно оси Оу, а на тех промежутках, где
, график функции
получается из графика функции
с помощью симметрии относительно оси Ох.
4. Закрепление пройденного материала
Далее учащимся предлагается задание.
По рисунку определить какое преобразование над графиком показано (слайд №16)
5. Получение домашнего задания
Учитель объявляет домашнее задание, учащиеся записывают в дневники: Виленкин стр. 67 №69 (д, е, ж); стр. 69 №70 (г, е, ж).
6. Подведение итогов
Итак, ребята сегодня на уроке вы познакомились с несколькими видами преобразования графиков, перечислите их.
· Параллельный перенос;
· Растяжение и сжатие по оси Оу;
·Растяжение и сжатие по оси Ох;
· Графики функций, содержащих знак модуля.
Молодцы! Урок окончен, все свободны.
Ребята собирают вещи и покидают кабинет.
Анализ информации слайдов №№17 – 18.
Похожие работы
-
Новая парадигма развития в возрастной периодизации
Современный период характеризуется вступлением всей науки, в том числе и психологической, в новую системно-информационно-энергетическую фазу, которая может быть определена как синергетическая парадигма.
-
Взаимные превращения жидкостей и газов. Твердые тела
Министерство образования Российской Федерации Бирский государственный педагогический институт Кафедра методики физики и ТСО. ТВОРЧЕСКАЯ РАБОТА
-
Изучение функций и их графиков на элективном курсе по алгебре в 9 классе
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Вятский государственный гуманитарный университет»
-
Информатика
Марийский государственный педагогический институт им. Н.К. Крупской. кафедра алгебры и геометрии Методика изложения темы “ Введение в информатику”.
-
Межпредметные связи в школьном курсе информатики
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Филиал ГОУ ВПО «Костромской государственный университет им. Н.А.Некрасова» в г. Кировске Мурманской области Кафедра: гуманитарных и естественных дисциплин
-
Использование интерактивной доски на уроках математики
Использование интерактивной доски на уроках математики Монастырева Лариса Викторовна, учитель математики и информатики МОУ СОШ №2, г. Барабинск, Новосибирской области
-
Тождественные преобразования выражений и методика обучения учащихся их выполнению
Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный университет им. Ф. Скорины» Математический факультет
-
Методика изучения функций в школьном курсе математики
Анализ функционально-графического моделирования как основной линии обучения. Использование генетической и логической трактовок понятия функции. Определение основных направлений и методической схемы введения нового материала в школьный курс математики.
-
Диалектика развития понятия функции в школьном курсе математики
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФАКУЛЬТЕТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ НАУК Диалектика развития понятия функции в школьном курсе математики
-
Методика изучения неравенств
Методика обучения понятию неравенства и решению неравенств в начальной школе. Содержание и роль линии уравнений и неравенств в школьном курсе математики. Классификация преобразований неравенств и их систем. Общая последовательность изучения материала.