Название: Индуктивное умозаключение
Вид работы: доклад
Рубрика: Философия
Размер файла: 16.55 Kb
Скачать файл: referat.me-357346.docx
Краткое описание работы: Структура индуктивного умозаключения. Отличие индуктивного умозаключения от дедуктивного. Способы обоснования вывода неполной индукции.
Индуктивное умозаключение
Индукция (от лат. inductio - наведение) - это такое умозаключение, в котором вывод представляет собой знание обо всем классе предметов, полученное в результате исследования отдельных представлений этого класса.
Мыслительный процесс в индуктивном умозаключении идет по схеме:
Предметы А, В, С, Д имеют одинаковый признак Р;
А, В, С, Д принадлежат к одному классу S.
Следовательно, все S есть Р.
Содержание этой схемы таково:
а) путем сравнения устанавливается ряд предметов или явлений с одинаковыми признаками;
б) на основании прежнего опыта или путем внешнего сходства выявляют принадлежность этих признаков или явлений к одному и тому же классу (роду);
в) исходя из принципа устойчивости и повторяемости родовых признаков, делается вывод о том, что установленные свойства присущи всем предметам этого рода.
Структура индуктивного умозаключения:
а) исходное знание;
б) обосновывающее знание;
в) выводное знание.
Отсюда вытекают два основных требования:
1) индуктивное обобщение прочно лишь тогда, когда оно ведется по существенным признакам.
2) индуктивное обобщение распространяется только на объективно сходные, однородные предметы.
Отличие индуктивного умозаключения от дедуктивного:
а) индуктивный вывод строится на множестве посылок;
б)заключение возможно при всех отрицательных посылках;
в) все посылки индуктивного умозаключения - единичные или частные суждения;
г) в индуктивном умозаключении даже из верных посылок вывод получается вероятностный.
По составу и характеру вывода индуктивные умозаключения делятся на полную индукцию и неполную индукцию.
Неполная индукция бывает:
· обобщением через простое перечисление;
· обобщение через отбор фактов.
Обобщение через отбор с применением экспериментальных методов проверки можно назвать научной индукцией.
Охарактеризуем основные виды индуктивных умозаключений.
Полная индукция - умозаключение, в котором общий вывод получается в результате изучения всех предметов данного класса. Схема:
S1 обладает признаком Р
S2 обладает признаком Р
S3 обладает признаком Р
S1, 2, 3 исчерпывают класс предметов S
Все S обладают признаком Р (Все S есть Р).
Полная дедукция дает почти достоверный вывод. Метод полной дедукции можно применить тогда, когда можно ограничить класс предметов (т.е. знаем, что все предметы, входящие в этот класс, известны).
Неполная индукция - умозаключение, в котором вывод о существенных признаках всего класса предметов делается в результате исследования лишь части предметов данного класса.
Схема: S1 обладает признаком Р
S2 ---” ------” ----- Р
S3 ---” ------” ----- Р
S1,2,3 некоторый представители класса S
Все S обладают признаком Р.
Данный метод дает вероятностный вывод, т.к. достаточно одного ложного признака, чтобы вывод стал ложный.
Условия, которые необходимо соблюдать, чтобы повысить вероятность вывода неполной индукции:
1-е - необходимо брать возможно большее количество случаев для его обобщений;
2-е - факты, служащие основанием для обобщения, должны быть по возможности разнообразны;
3-е - необходимо, чтобы предметы, знания о которых индуктивно обобщаются, обладали внутренней объективной связью между собой, и признаки, по которым идет обобщение, были существенными для данных предметов.
Способы обоснования вывода неполной индукции.
Популярная индукция - индукция, в которой вывод обо всем классе предметов делается на основании исследований некоторых членов класса при отсутствии противоречащих случаев.
Недостатки:
= обобщение происходит на основании того, что факты берутся без отбора;
= признаки явлений не объяснены внутренней причинной связью.
Пример: Если ласточки летают низко - быть дождю.
Замечена связь, которая не объяснена, но противоречивых случаев нет. Популярна индукция проверяет догадки о причинно-следственной связи явлений. Затем вступает в действие научная индукция.
Научная индукция - умозаключение, в котором вывод о признаках класса предметов делается на основе исследования внутренней обусловленности этих признаков у части предметов этого класса.
При подготовке этой работы были использованы материалы с сайта http://www.studentu.ru
Похожие работы
-
Дедуктивное умозаключение
Виды дедуктивных умозаключений. Силлогизм: его структура и анализ.
-
Умозаключения и их виды
Разделительно-категорическое умозаключение. Условно-категорическое умозаключение. Условно-разделительное умозаключение.
-
Общие сведения об умозаключении
Виды непосредственных умозаключений. Демонстративные умозаключения. Структура и классификация умозаключений.
-
Индуктивный и дедуктивный методы построения теории
Теория как форма научного познания. Функции теории и ее проверка. Основные формы умозаключений. Роль индукции и дедукции в философском и научном познании. Полная и неполная индукция: переход от частного к общему. Дедукция как выведение частного из общего.
-
Умозаключение
Умозаключение - форма мышления, посредством которого из одного или нескольких суждений выводится новое суждение. Виды умозаключений. Логика суждений (высказываний). "Аксиомы" логики суждений. Правила вывода логики суждений. "Условный силлогизм".
-
Природа и структура умозаключения
Необходимость в сложных формах мышления. Процесс, цели и формы познания. Идеалистический и материалистический взгляд на природу умозаключения. Содержательные и формально-алогические умозаключения. Классификация, компоненты и примеры умозаключения.
-
Вероятностные умозаключения
Виды вероятностных умозаключений. Индуктивное умозаключение. Виды индукции. Индуктивные методы установления причинно-следственных связей. Умозаключение по аналогии. Условия состоятельности выводов по аналогии. Аналогия свойств и аналогия отношений.
-
Индуктивные и дедуктивные умозаключения
Умозаключение как сложная форма мышления. Сущность теории умозаключений. Значение изучения индукции. Классификация умозаключений по направленности логического следования. Вывод нового суждения. Непосредственные умозаключения через отношение суждений.
-
Индуктивная логика
Индуктивная логика как научное направление, предмет и методы ее исследования, характеристика основных форм - индуктивных умозаключений и аналогий. Схема полной, неполной, математической, исключающей индукции. Умозаключение по аналогии, ее разновидности.
-
Дедукция
Дедукция (от лат. deductio — выведение) — переход от посылок к заключению, опирающийся на логический закон, в силу чего заключение с логической необходимостью следует из принятых посылок.