Название: Геометрическая оптика и квантовые свойства света
Вид работы: реферат
Рубрика: Физика
Размер файла: 76.2 Kb
Скачать файл: referat.me-341618.docx
Краткое описание работы: Реферат На тему: «Геометрическая оптика и квантовые свойства света.» Выполнил Шайхутдинов Талгат Геометрическая оптика Геометрической оптикой называется раздел оптики, в котором изучаются законы распространения световой энергии в прозрачных средах на основе представления о световом луче.
Геометрическая оптика и квантовые свойства света
Реферат
На тему: «Геометрическая оптика и квантовые свойства света.»
Выполнил Шайхутдинов Талгат
Геометрическая оптика
Геометрической оптикой называется раздел оптики, в котором изучаются законы распространения световой энергии в прозрачных средах на основе представления о световом луче.
Световой луч – это не пучок света ,а линия указывающая направление распространения света.
Основные законы:
1. Закон о прямолинейном распространении света .
Свет в однородной среде распространяется прямолинейно. Прямолинейностью распространения света объясняется образование тени ,то есть место, куда не проникает световая энергия . От источников малых размеров образуется резко очерченная тень ,а больших размеров создают тени и полутени, в зависимости от величины источника и расстояния между телом и источником.
2. Закон отражения. Угол падения равен углу отражения.
Падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред , восстановленный в точке падения луча , лежат в одной плоскости
α-угол падения β-угол отражения γ-перпендикуляр опущенный в точку падения
3. Закон преломления.
На границе раздела двух сред свет меняет направление своего распространения . Часть световой энергии возвращается в первую среду ,то есть происходит отражение света. Если вторая среда прозрачна ,то часть света при определенных условиях может пройти через границу сред также меняя при этом ,как правило , направление распространения . Это явление называется преломлением света.
α-угол падения β- угол преломления.
Падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред , восстановленный в точке падения луча , лежат в одной плоскости . отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред.
Постоянная n называется относительным показателем преломления или показателем преломления второй среды относительно первой.
Ход лучей в треугольной призме
В оптических приборах часто применяется треугольная призма из стекла или других прозрачных материалов .
Ход лучей в сечении треугольной призмы
Луч, проходящий через треугольную стеклянную призму, всегда стремится к её основанию.
Угол φназывается преломляющим углом призмы .Угол отклонения луча θ зависит от показания преломления n призмы и угла падения α.В оптических приборах часто применяют оптические призмы в виде равнобедренного прямоугольного треугольника . Их применение основано на том что предельный угол полного отражения для стекла равенα0 =450
Ход лучей в призмах такого вида
Поведение лучей при перехождении из среды одного типа в другую.
При попадании луча из менее плотной среды в более плотную происходит преломление и луч прижимается к перпендикуляру опущенному в точку падения
α – угол падения, β- угол преломления
При попадании луча из более плотной среды в менее плотную происходит преломление и луч прижимается к границе раздела сред.
α-угол преломления , β-уол падения
Линза
Прозрачное тело, ограниченное с двух сторон сферическими поверхностями называется линзой
Рис 1.
Рис2 Рис 3 Рис 4
Обычно линзы делают из стекла. Прямую ОО1 проходящую через центры сферических поверхностей называют главной оптической осью (рис1) .
Линзы середина которых больше , чем края ,называют собирающими(рис 2)
Линзы изображенные на рисунке 3 называют рассеивающими.
Любую линзу можно представить , как совокупность стеклянных призм (Рис 4).
В воздухе собирающая линза отклоняет лучи к главной оптической оси, а рассеивающая – от главной оптической оси .
Рассмотрим тонкую линзу .то есть линзу у которой её толщина АВ много меньше радиусов R1 и R2 . Все последующие рассуждения относятся к тонкой линзе . Как сферические и плоские зеркала , линзы создают изображения источников света . Это означает ,что свет исходя из какой – либо точки предмета , после преломления в линзе снова собирается в одной точке( изображение),независимо от того, через какую часть линзы прошли лучи. В случае если прошедшие через линзу сходятся ,они образуют действительное изображение . Если прошедшие через линзу лучи расходятся, то пересекаются в одной точке не сами лучи , а их продолжения . изображение тогда является мнимым.
Рассеивающая линза
Лучи параллельные главной оптической оси линзы после преломления рассеивающей линзой будут расходящимися, а их продолжения пересекаются в главном фокусе рассеивающей линзы он является мнимым и расположен на расстоянии F от линзы
Второй минимальный главный фокус находится с другой стороны линзы на том же расстоянии если среда по обе стороны линзы одна и та же .
Собирающая линза
Точка в которой собираются после преломления лучи падающие на линзу называется главным фокусом линзы ,а расстояние от фокуса до лизы называется фокусным расстоянием
Фокусов у линзы два
Плоскость перпендикулярная главной к главной оптической оси линзы и проходящая через фокус называется фокальной плоскостью.
Поместив светящуюся тачку в любом месте фокальной плоскости , получим после преломления параллельные лучи.
Построение изображения в линзах
Свойства линзы определяются главным образом , расположением её фокусов . Это означает , что зная расстояние от источника до линзы и фокусное расстояние можно определить расстояние до изображения не рассматривая хода лучей в линзе .
Собирающая линза
Рассеивающая линза
При построении изображения светящейся точки ( предмета)из всего потока лучей падающих на линзу , выбирают 2 луча:
1. Луч идущий через оптический центр , он проходит не преломляясь.
2. Луч идущий II какой либо оптической оси ,после преломления этот луч пройдет через фокус лежащий на этой оптической оси.
3. Луч , проходящий через передний фокус линзы , такой луч после преломления пойдет II главной оптической оси.
4. Луч, проходящий через передний двойной фокус ,после преломления этот луч походит через задний двойной фокус .
Ход этих 4 лучей проследить наиболее просто . Чаще всего при построении используют первые два луча.
Если светящаяся точка лежит на главной оптической оси , то для ее построения необходимо повести побочную оптическую ось.
Примеры:
Квантовые свойства света
Свет можно представить не только с волновой точки зрения ,но и как поток своеобразных частиц – квантов света (фотонов )
Основная характеристика кванта - это энергия . Монохроматический световой поток состоит из фотонов с одинаковой световой энергией
Энергия фотона равна
E=hν=
Где h= 6.62 X 10-34 Дж сек – постоянная Планка, ν-Частота света(Гц), С- скорость света в вакууме м/сек, Х-Длина волны(м)
Фотоэффект
Явление , заключающееся в том, что металлические тела, подвергнутые облучению светом испускают электроны называется фотоэффектом. Фотоэффект – это вырывание электронов с поверхности металла под действием света.
Теория фотоэффекта была создана великим немецким физиком Эйнштейном. В соответствии с этой теорией энергия кванта света hν идёт на совершение работы выхода А, то есть работы, которую нужно совершить для отрыва электрона с поверхности металла, на сообщение электрону кинетической энергии.
hν= А -
Для каждого тела фотоэффект наблюдается лишь в то случае, если частота света больше минимального значения νм. Это минимальное значение называют красной границей фотоэффекта.
νм
=
Похожие работы
-
Геометрическая оптика
Исторические факты и законы геометрической оптики. Представления о природе света. Действие вогнутых зеркал. Значение принципа Ферма для геометрической оптики. Развитие волновой теории света. Геометрическая оптика как предельный случай волновой оптики.
-
Шпаргалки по физике, успешно использованные при поступлении в ТРТУ летом 2001 года
авноуск. Движение вижение по окружности Тело брош. под углом к горизонту Динамика мпульс авление Молекулярная Физика нергия Давление газов ермодинамика
-
Квантовая физика
ТЕМА "Квантовая оптика" 703. Светильник в виде цилиндра из молочного стекла имеет размеры: длину 25 см, диаметр 24 мм. На расстоянии 2 м при нормальном падении лучей возникает освещенность 15 лк. Определить силу света; яркость и светимость его, считая, что указанный излучатель косинусный.
-
Волновая и геометрическая оптика. Дифракция
Раскрытие сути понятия "дифракция", обучение основным способам наблюдения дифракции, ее положительные и отрицательные стороны для человека. Демонстрация опыта, который стал основой для открытия нового явления; установка по измерению длины световой волны.
-
Геометрическая оптика
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВЛАДИМИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ОБЩЕЙ ФИЗИКИ ГЕОМЕТРИЧЕСКАЯ ОПТИКА
-
Оптика
Содержание: История развития оптики. Основные положения корпускулярной теории Ньютона. Основные положения волновой теории Гюйгенса. Взгляды на природу света в
-
Геометрическая оптика
Омский Государственный Технический Университет Курсовая Работа на тему: «Геометрическая оптика». Работу выполнил: студент группы В-229 Ланцов Андрей
-
Оптика и оптические явления в природе
Что такое оптика? Ее виды и роль в развитии современной физики. Явления, связанные с отражением света. Зависимость коэффициента отражения от угла падения света. Защитные стёкла. Явления, связанные с преломлением света. Радуга, мираж, полярные сияния.
-
Экспериментальное исследование светового поля источника видимого излучения
Устройство фотометрической головки. Световой поток и мощность источника света. Определение силы света, яркости. Принцип фотометрии. Сравнение освещенности двух поверхностей, создаваемой исследуемыми источниками света.
-
Корпускулярно волновой дуализм 2
1. Введение. 2. Единство корпускулярных и волновых свойств электромагнитного излучения. 3. Волновые свойства света. а) Дисперсия. б) Дифракция. в) Поляризация