Referat.me

Название: Электрокинетический потенциал и методы его определения

Вид работы: реферат

Рубрика: Физика

Размер файла: 97.22 Kb

Скачать файл: referat.me-341931.docx

Краткое описание работы: Реферат Тема: Электрокинетический потенциал и методы его определения Введение Электрокинетические явления были открыты профессором Московского университета Ф.Ф.Рейсом в 1808г. при исследовании электролиза воды.

Электрокинетический потенциал и методы его определения

Реферат

Тема: Электрокинетический потенциал и методы его определения


Введение

Электрокинетические явления были открыты профессором Московского университета Ф.Ф.Рейсом в 1808г. при исследовании электролиза воды.

Явление перемещения жидкости в пористых телах под действием электрического поля получило название электроосмоса, а явление перемещения частиц – электрофореза.

В 1859г. Квинке обнаружил явление, обратное электроосмосу, т.е. при течении жидкости через пористое тело под действием перепада давлений возникает разность потенциалов. Возникновение разности потенциалов Квинке наблюдал при течении воды и водных растворов через разнообразные пористые материалы (глина, дерево, графит и др.). Это явление получило название потенциала течения (или потенциала протекания).

Количественное исследование эффекта, обратного электрофорезу, впервые было выполнено Дорном в 1878г. Он измерял возникающую разность потенциалов при седиментации частиц суспензии кварца в центробежном поле. Явление возникновения разности потенциалов при осаждении дисперсной фазы получило название потенциала седиментации (или потенциала оседания).

Таким образом, по причинно-следственным признакам электрокинетические явления в дисперсных системах делят на две группы. К первой группе относят явления, при которых относительное движение фаз обусловлено электрической разностью потенциалов; это электроосмос и электрофорез. Ко второй группе электрокинетических явлений принадлежат потенциал течения и потенциал седиментации, при которых относительное движение фаз вызывает возникновение электрической разности потенциалов.

Наибольшее практическое применение получили электрофорез и электроосмос.

Электрокинетические явления в течение длительного времени не находили объяснения. Теперь, на основании рассмотренных представлений об электрических свойствах границы раздела, причиной этих явлений можно считать существование двойного электрического слоя (ДЭС). Действительно, разноименность зарядов фаз приводит в случае неподвижного пористого тела в электрическом поле к перемещению подвижных противоионов вместе с жидкой фазой к соответствующему полюсу (одноименного с твердой фазой знака). Действие же внешней механической силы (давление) вызывает вынос подвижного заряда диффузного слоя и, следовательно, возникновение разности потенциалов. Потенциал, возникающий на плоскости скольжения при отрыве части диффузного слоя, называется электрокинетическим потенциалом или ζ-потенциалом. Дзета-потенциал, отражая свойства двойного электрического слоя, характеризует природу фаз и межфазного взаимодействия.

Из этого качественного рассмотрения видно, что действующая электрическая сила (в явлениях электроосмоса и электрофореза), равная произведению заряда на градиент потенциала, тем больше, чем больше зарядов диффузного слоя оказывается в подвижной части жидкости. От этих зарядов зависит и величина конвективного тока и, следовательно величины потенциалов течения и оседания.

Таким образом, все эти явлении должны быть развиты тем сильнее, чем больше подвижный заряд диффузного слоя и ζ-потенциал границы скольжения. Отсюда следует, что ζ-потенциал есть мера интенсивности элетрокинетических явлений. С другой стороны, измеряя параметры этих явлений, можно вычислить ζ-потенциал на основе теории, связывающей его с этими параметрами.


Электроосмос

Рис. 1. Изменение потенциала ψ и скорости u с расстоянием от поверхности.

Рассмотрим бесконечно тонкий слой жидкости толщиной dx (δ R, поверхность практически плоская), движущийся под действием внешнего электрического поля напряженностью X, направленного параллельно границе скольжения (рис. 1).

Электрическая сила действует на отдельные ионы, но, согласно закону Ньютона, она уравновешивается силой трения, возникающей в жидкости. Таким образом, в стационарном состоянии и в ламинарном режиме суммарная сила, действующая на каждый слой, равна нулю и каждый слой жидкости толщиной dx движется с постоянной скоростью параллельно границе скольжения. Это означает, что электрическая сила, действующая на объемный заряд, должна уравновешиваться силами трения соседних слоев, равными η (du/dx), на единицу площади боковой поверхности

(1)

где ρ – объемная плотность заряда; η – коэффициент вязкости; u – линейная скорость движения жидкости.

Исходя из принципа суперпозиции полей и учитывая уравнение Пуассона , получим:

(2)

В результате интегрирования, выполняемого при граничных условиях

находим:

(3)

где uэо – электроосмотическая скорость; знак минус означает, что жидкость движется против поля, если ζ > 0

(4)

Для капиллярно-пористых тел точные значения напряженности поля X и линейной скорости u обычно неизвестны вследствие извилистости и сложности структуры пор. Поэтому целесообразно перейти к велечинам, измеряемым на опыте, - объемной скорости жидкости Q и току I. Для этого используем закон Ома и известные выражения для R, X и Q

где R – сопротивление; к – удельная электропроводность жидкости; l и A – эффективные длина и площадь сечения пор.

Подстановка значений uэо и Х в уравнение (3) дает:

(5)

Это уравнение носит название уравнения Гельмгольца – Смолуховского для электроосмоса.

Таким образом, движение ионов диффузного слоя под действием электрического поля увлекает вследствие внутреннего трения всю массу жидкости, которая заполняет капилляры или поры, со скоростью Q в направлении поля.

Весьма существенно, что уравнение (5) не включает геометрических параметров системы (l, A); все величины, входящие в правую часть уравнения, измеримы на опыте. Зависимость Q от I, изученная экспериментально для многих систем, оказалась линейной, подтверждая уравнение (5).

Таким образом, экспериментальное определение Q и I позволяет вычислить ζ-потенциал.

Рис. 2. Прибор для измерения электроосмоса в мембранах.

Для измерений применяют установки различного типа; пример одной из них приведен на рис. 2. Пористая мембрана 1, зажатая между фланцами 2 и 3, разделяет два симметричных сосуда 4 с отсчетными капиллярными трубками 5 и неполяризующими электродами (Сu/CuSO4 – агар) 6. Ячейку заполняют раствором электролита так, чтобы мениски жидкости находились в средней части градуированных трубок. Соединяя электроды с внешним источником тока, измеряют объем V жидкости, перемещающийся за время t в капиллярных трубках вследствие электроосмоса в мембране 1. Для расчетов используют среднее значение скорости Qср = (V + V’)2t, нивелируя таким образом изменения V, связанные с тепловым расширением. Измерения повторяют несколько раз, меняя направление тока. Значение I среднее за период измерения определяют по амперметру, а значения η, ε и к берут из таблиц. При выполнении измерений необходимо, чтобы уровни жидкости находились на одной высоте; это исключает влияние гидростатического давления.

Можно проводить опыт по-иному, предоставив жидкости подниматься в одном из колен сосуда. В этом случае установится равновесие, в котором электрическая сила равна гидростатической (весу столба жидкости). Используя выражения (3) и (4) и формулу Пуазейля:

,

где Q – расход жидкости (поток) в единицу времени; Р – дпаление; r и l- радиус и длина капилляра; К – константа, определяемая геометрическими параметрами, получаем:

Измеряя равновесную высоту поднятия h, и, следовательно, гидростатическое давление P = gdh, можно найти ζ, если известен радиус пор r.


Электрофорез

Движение частиц дисперсной фазы в постоянном электрическом поле в жидкой среде схематически изображено на рис. 3.

Рис. 3. Схема электрофореза

Отрицательно заряженная частица вместе с плотным слоем ионов внешней обкладки приобретает направленное движение в сторону положительного полюса, тогда как ионная атмосфера (диффузный слой) перемещается в противоположном направлении. При выборе системы координат, неподвижно связанной с частицей, получается картина, принципиально идентичная электроосмосу, и, следовательно, уравнение (3) должно быть применимым к электрофорезу (с обратным знаком). В отличие от электроосмоса здесь можно непосредственно измерить линейную скорость движения частиц u, а также поле X = E/l, гдн E – разность потенциалов на электродах; l – расстояние между ними.

Многочисленные эксперименты подтвердили применимость уравнения (3) к электрофорезу, в частности, линейную зависимость –uэф = -uэо от Х. Целесообразно ввести понятие электрофоретической подвижности v, равной скорости движения частицы в единичном поле (Х = 1):

(6)

(7)

В этом случае уравнение (3) запишется

(8)

или для разбавленных водных растворов при 20о С в практической системе электрических единиц

где v выражено в = .

Значения v, измеренные на опыте, оказываются несколько меньшими, чем для обычных ионов в растворе и лежат в большинстве случаев в интервале (0,1 – 5)*10-4 см2 /(с*В), что соответствует значениям ζ от 1,5 до 75 мВ.

Методика измерения электрофореза сводится либо к непостредственной регистрации скорости движения частицы в электрическом поле в плоской камере под микроскопом (или ультрамикроскопом) при помощи сетки или шкалы, помещенной в окуляр (окулярмикрометр), либо по скорости перемещения границы золя с «боковой» жидкостью в градуированной U-образной трубке.


Заключение

ζ-потенциал есть мера интенсивности элетрокинетических явлений.

Измеряя параметры таких электрокинетических явлений, как электроосмос и электрофорез, можно вычислить ζ-потенциал на основе теории, связывающей его с этими параметрами.

Экспериментальное определение Q и I позволяет вычислить ζ-потенциал.


Литература:

1) Фридрихсберг Д.А. Курс коллоидной химии. Л.: «Химия», 1980г.

2) Воюцкий С.С. Курс коллоидной химии. М.: «Химия», 1976г

3) Григоров О.Н. Электрокинетические явления. М.: «Наука», 1973г.

Похожие работы

  • ЭМА с применением электролиза, электрогравиметрия, внешний и внутренний электролиз, кулонометрия

    Метод осаждения определяемого элемента путем электролиза на предварительно взвешенном электроде. Требования к электродам, применяемым в электрогравиметрии. Подчинение законам Фарадея. Электрохимическая поляризация. Электролиз в кулонометрической ячейке.

  • Электрофорез и электроосмос

    Общие сведения о дисперсных системах, электрокинетические явления в них. Электроосмос и электроосмотическое скольжение электролита в капилляре. Электрофоретическое движение частиц в электролите. Практическое применение электрокинетических явлений в науке.

  • Билеты по Физике

    Вопросы к экзамену по Физике Электрический ток в электролитах. Законы электролиза. Электропроводимость газов. Самостоятельный и несамостоятельный газовые разряды.

  • Определение массы тела косвенным методом измерений

    Цель работы: Изучить методы прямых и косвенных измерений. Изучить методы определения погрешностей прямых и косвенных измерений. Изучить методику измерений с помощью штангенциркуля и микрометра.

  • Свет – электромагнитная волна. Скорость света. Интерференция света. Стоячие волны.

    Гимназия 144 Реферат на тему: Свет – электромагнитная волна. Скорость света. Интерференция света. Стоячие волны. ученика 11 класса Корчагина Сергея

  • Электрокинетические явления при фильтрации жидкости в пористой среде

    Министерство общего и профессионального образования РФ Башкирский государственный университет Физический факультет Кафедра прикладной физики КУРСОВАЯ РАБОТА

  • Тепловые явления: холод из угля

    Получение из угля не жара, а, напротив, холода не является чем-то несбыточным: оно каждодневно осуществляется на заводах так называемого «Сухого льда». Уголь сжигается здесь в котлах, а образующийся дым очищается, при чём содержащийся в нём углекислый газ улавливается щелочным раствором. Выделяемый затем в чистом виде путём нагревания углекислый газ при последующем охлаждении и сжатии переводится в жидкое состояние под давлением 70 атмосфер.

  • Майкл Фарадей

    ФАРАД Й Майкл ФАРАДЁЙ, Майкл [22.IX.1791, Лондон (Ньюингтон)-25. VIII. 1867, Хэмптон-Корт ок. Лондона]- английский физик, создатель учения об электромагнитном поле, член Лондонского королевского общества (с 1824).

  • Андерс Цельсий

    Андерс Цельсий (швед. Anders Celsius) (27 ноября 1701 — 25 апреля 1744) — шведский астроном, геолог и метеоролог (в те времена геология и метеорология считались частью астрономии). Профессор астрономии Упсальского университета (1730—1744). Предложил шкалу Цельсия, в которой температура тройной точки воды (эта температура практически совпадает с температурой плавления льда при нормальном давлении) принималась за 100, а температура кипения воды — за 0. [1] После смерти Цельсия в 1744 году шкала была перевернута М.

  • Фазы потенциала действия. Радиоактивные излучения

    Потенциал действия и его фазы. Роль ионов Na K в генерации потенциала действия в нервных и мышечных волокнах: роль ионов Ca и Cl. Восстановление от радиационного поражения. Основные методы регистрации радиоактивных излучений и частиц. Их характеристика.