Referat.me

Название: Лазеры на иттрий-алюминиевом гранате

Вид работы: реферат

Рубрика: Физика

Размер файла: 222.99 Kb

Скачать файл: referat.me-343096.docx

Краткое описание работы: Общая характеристика уровней легирования и схема энергетических уровней кристалла Nd: YAG. Сущность эффекта Штарка. Особенности работы непрерывного Nd: YAG-лазера. Методика расчета средней выходной мощности лазера, работающего в режиме одной моды ТЕМ00.

Лазеры на иттрий-алюминиевом гранате

Реферат

на тему:

Лазеры на иттрий-алюминиевом гранате


Введение

Неодимовые лазеры являются самыми популярными из твердотельных лазеров. В этих лазерах активной средой обычно является кристалл Y3AI5O12 [сокращенно называемый YAG (yttrium aluminum garnet, иттрий-алюминиевый гранат)], в котором часть ионов Y3+ замещена ионами Nd3+. Иногда также используется фосфатное или силикатное стекло, легированное ионами Nd3+. Типичные уровни легирования для кристалла Nd : YAG составляют порядка 1 ат. %. Более высокие уровни легирования ведут к тушению люминесценции, а также к внутренним напряжениям в кристаллах, поскольку радиус иона Nd3+ примерно на 14 % превышает радиус иона Y3+. Этот уровень легирования придает прозрачному кристаллу YAG бледно-пурпуровую окраску, поскольку линии поглощения Nd3+ лежат в красной области.


Nd:YAG-лазер

На рис. 1 представлена упрощенная схема энергетических уровней Nd :YAG. Эти уровни обусловлены переходами трех 4f электронов внутренней оболочки иона Nd3+. Поскольку эти электроны экранируются восемью внешними электронами (5s2 и 5р6), на упомянутые энергетические уровни кристаллическое поле влияет лишь в незначительной степени. Поэтому спектральные линии, соответствующие рассматриваемым переходам, относительно узки. Уровни энергии обозначаются в соответствии с приближением связи Рассела— Сандерса атомной физики, а символ, характеризующий каждый уровень, имеет вид 2s+1LJ, где S —суммарное спиновое квантовое число, J— суммарное квантовое число углового момента, а L — орбитальное квантовое число. Заметим, что разрешенные значения L, а именно L = О, 1, 2, 3, 4, 5, 6, ..., обозначаются прописными буквами соответственно S, Р, D, F, G, Н, I, ... .

Рис. 1. Упрощенная схема энергетических уровней кристалла Nd : YAG.

Таким образом, основное состояние 4I9/2 иона Nd3+ соответствует состоянию, при котором 2S+ 1=4 (т. е. S = 3/2), L = 6 и J = L —5 = 9/2. Две основные полосы накачки расположены на длинах волн 0,73 и 0,8 мкм соответственно, хотя другие более высоко лежащие полосы поглощения также играют важную роль. Эти полосы связаны быстрой (~ 10-7 с) безызлучательной релаксацией с уровнем 4Fз/2, откуда идет релаксация на нижние уровни (а именно 4I9/2, 4I11/2 и 4I13/2); этот последний уровень не показан на рис.1. Однако скорость релаксации намного меньше (т = 0,23 мс), поскольку переход запрещен в приближении электродипольного взаимодействия (правило отбора для электродипольно разрешенных переходов имеет вид ΔJ=0 или ±1) и поскольку безызлучательная релаксация идет медленно вследствие большого энергетического зазора между уровнем 4F3/2 и ближайшим к нему нижним уровнем. Это означает, что уровень 4F3/2 запасет большую долю энергии накачки и поэтому хорошо подходит на роль верхнего лазерного уровня. Оказывается, что из различных возможных переходов с уровня 4F3/2 на нижележащие уровни наиболее интенсивным является переход 4F3/2 - I11/2 Кроме того, уровень 4I11/2 связан быстрой (порядка наносекунд) безызлучательной релаксацией в основное состояние, а разница между энергиями уровней 4I11/2 и 4I9/2 почти на порядок величины больше, чем кТ. Отсюда следует, что тепловое равновесие между этими двумя уровнями устанавливается очень быстро и согласно статистике Больцмана уровень 4I11/2 в хорошем приближении можно считать практически пустым. Таким образом, этот уровень может быть прекрасным кандидатом на роль нижнего лазерного уровня.

Из сказанного выше ясно, что в кристалле Nd : YAG переход 4F3/2 - 4I11/2 хорошо подходит для получения лазерной генерации в четырехуровневой схеме. В действительности необходимо принимать во внимание следующее; Уровень 4F3/2 расщеплен электрическим полем внутри кристалла (эффект Штарка) на два сильно связанных подуровня (R1 и R2), разделенных энергетическим зазором ΔЕ = 88 см-1. Уровень 4I11/2 также расщеплен вследствие эффекта Штарка на шесть подуровней. Оказывается, что лазерная генерация обычно происходит с подуровня R2 уровня 4F3/2 на определенный подуровень уровня 4I11/2, поскольку этот переход обладает наибольшим значением сечения перехода (σ = 8,8-10-19 см2). Этот переход имеет длину волны λ= 1,064 мкм (ближний ИК. диапазон). Однако необходимо напомнить, что, поскольку подуровни R1 и R2 сильно связаны, при всех вычислениях используют эффективное сечение σ21= 3,5*10-19 см2 . Следует также заметить, что, используя в резонаторе лазера подходящую дисперсионную систему генерацию можно получить на многих других длинах волн, соответствующих различным переходам: 4F3/2 - I11/2 ( λ= 1,05—1,1 мкм), 4F3/2 - I13/2 (λ = 1,3 9 мкм— наиболее интенсивная линия в этом случае) и переходу 4F3/2 - I11/2 (λ около 0,95 мкм). Кроме того, стоит вспомнить, что лазерный переход с λ= 1,06 мкм при комнатной температуре однородно уширен вследствие взаимодействия с фононами решетки. Соответствующая ширина Δν = 6,5 см-1 = 195 ГГц при температуре T = 300 К. Это делает Nd: YAG очень подходящим для генерации в режиме синхронизации мод. Большое время жизни верхнего лазерного уровня (t = 0,23 мс) позволяет Nd : YAG быть весьма хорошим для работы в режиме модулированной добротности. Nd : YAG лазеры могут работать как в непрерывном, так и в импульсном режиме. В обоих случаях обычно используются линейные лампы в схемах с одноэллипсным осветителем, с близким расположением лампы и кристалла или с многоэллипсным осветителем. Для работы в импульсном и непрерывном режимах применяются соответственно ксеноновые лампы среднего давления (500— 1500 мм рт. ст.) и криптоновые лампы высокого давления (4— 6 атм). Размеры стержней обычно такие же, как и у рубинового лазера. Выходные параметры Nd:YAG-лазера оказываются следующими: в непрерывном многомодовом режиме выходная мощность до 200 Вт; в импульсном лазере с большой скоростью повторения импульсов (50 Гц) средняя выходная мощность порядка 500 Вт; в режиме модулированной добротности максимальная выходная мощность до 50 МВт; в режиме синхронизации мод длительность импульса до 20 пс. Как в импульсном, так и в непрерывном режиме дифференциальный КПД составляет около 1—3%.


Пример действующего лазера

Рассмотрим непрерывный Nd: YAG-лазер. Активной средой здесь являются ионы Nd3+ в кристалле Y3AI5O12. Ионы Nd3+ замещают в кристалле некоторые ионы Y3+. Достаточно отметить, что такой лазер работает по четырехуровневой схеме и его длина волны излучения λ = 1,06 мкм (ближняя ИК-область спектра). Предположим, что концентрация ионов Nd3+ составляет 1 % (т. е. 1 % ионов Y3+ замещен ионами Nd3+); это означает, что населенность основного состояния равна Ng= 6•1019 ионов Nd3+/cм3. При этом значении концентрации время жизни верхнего лазерного уровня (зависимость времени жизни от концентрации обусловлена концентрационной зависимостью скорости релаксации безызлучательного канала) составляет t = 0,23*10-3 с. По сравнению с этим временем время жизни нижнего лазерного уровня намного меньше. Для того чтобы вычислить эффективное сечение, заметим, что верхний лазерный уровень в действительности состоит из двух сильно связанных уровней, разделенных расстоянием ΔЕ = 88 см-1 (см. рис. 1).

Рис 2.Схема резонатора.

Генерация происходит между подуровнем R2 верхнего уровня и подуровнем нижнего 4I11/2 лазерного уровня. Сечение этого перехода σ= 8,8 * 10-19 см2. Рассмотрим теперь лазерную систему, показанную на рис. 2, и предположим, что накачка стержня осуществляется криптоновой лампой высокого давления с эллиптической конфигурацией осветителя. Типичная кривая зависимости выходной мощности Р (при многомодовой генерации) от входной мощности Рр, подводимой к криптоновой лампе, должна иметь линейный вид Экстраполяция линейного участка кривой дает для пороговой мощности накачки значение Рпор = 2,2 кВт. Используя приведенные выше значения t и σ21, получаем Is = hν/tσ21 = 2,33 кВт/см2 ,таким образом находим Р = 58 (Рр/Рпор — 1), что хорошо согласуется с экспериментом.

Чтобы можно было сравнить значения пороговой мощности (Рпор = 2,2 кВт) и дифференциального КПД (n = 2,4%), полученные экстраполяцией экспериментальных данных, с соответствующими теоретическими значениями, необходимо знать величину yi. Поскольку хорошее многослойное зеркальное покрытие имеет коэффициент поглощения меньше 0,5%. мы пренебрегли здесь поглощением зеркала а2. Если провести несколько измерений пороговой мощности накачки при различных коэффициентах отражения зеркала R2, то должна получиться линейная зависимость Рпор от -In R2. Именно такая зависимость и наблюдается в эксперименте

Поскольку внутренние потери известны, то можно найти КПД накачки Если положить дифференциальный КПД равным 2,4%, то получаем КПД накачки равное 4,2 %, что вполне соответствует рассматриваемому типу системы накачки . Если известны полные потери, то можно также рассчитать пороговую инверсию населенностей (Nc=4,5*1016 Nd3+ ионов/см2).

Вычислим теперь оптимальное пропускание выходного зеркала в случае, когда накачка в три раза превышает пороговую (х = 3), т. е. когда входная мощность, подводимая к лампе, составляет 6,6 кВт. хмин = 9,4. Таким образом получаем (γ2)опт = 0,157, что соответствует величине оптимального пропускания (Т1)опт =14,5%. Эта величина очень близка к значению пропускания зеркала, используемого в рассматриваемом примере.

В качестве последней задачи вычислим среднюю выходную мощность лазера, работающего в режиме одной моды ТЕМ00 при входной мощности накачки лампы Рр = 10 кВт. Прежде всего находим, что размер пятна на плоском зеркале резонатора, показанного на рис. 2, составляет 0,73 мм, где R —радиус кривизны вогнутого зеркала, а L —длина резонатора. Предположим, что для осуществления генерации на моде ТЕМоо в резонатор вблизи сферического зеркала помещена круглая диафрагма достаточно малого диаметра 2a, чтобы предотвратить генерацию на моде ТЕМ10. Следовательно, полные потери этой последней моды должны достигать по крайней мере величины 0,54, а дифракционные потери из-за введения диафрагмы должны составлять γd= 0,42. Поэтому дифракционные потери за полный проход резонатора равны 2γd = 0,84, что при полном проходе резонатора дает потери Ti = 57 %. Чтобы найти требуемый размер диафрагмы, заметим, что потери после полного прохода резонатора, показанного на рис.2 , оказываются такими же, как и при одном проходе в симметричном резонаторе, образованном двумя одинаковыми зеркалами с радиусами кривизны R = 5 м, расположенными друг от друга на расстоянии Ls = 2L = 1 м, и с диафрагмой внутри резонатора диаметром 2а. Поскольку g'= 0,8 и потери должны составлять 57 %, необходимо, чтобы N = a2/λLs = 0,5, откуда получаем размер диафрагмы а = 0,73 мм. При такой диафрагме мода ТЕМ00 эквивалентного симметричного резонатора имеет потери, равные 28 %. Поэтому они также равны дифракционным потерям нашего резонатора за полный проход, а это означает, потери за один проход равны 0,164. Таким образом, полные потери моды ТЕМоо возрастают до 0,283 и пороговая мощность накачки должна быть равной Рпор = 5,2 кВт. Получаем P=1,45.


Заключение

Nd: YAG-лазеры широко применяются в различных областях, среди которых : измерение расстояний (в большинстве лазерных дальномеров для военных целей и прицельных устройств используются Nd : YAG-лазеры); применение в науке (лазеры с модулированной добротностью); обработка материалов (резка, сверление, сварка и т. д.); применение в медицине (фотокоагуляция).

В качестве матриц для иона Nd3+ также можно использовать многие другие кристаллические материалы, такие, как YAL0[YAlO3], YLF[YLiF4] и GSGG [Gd3Sc2Ga3O12].

Похожие работы

  • Измерение длины волны излучения лазера интерференционным методом

    Понятие и назначение лазера, принцип его работы и структурные компоненты. Типы лазеров и их характеристика. Методика и основные этапы измерения длины волны излучения лазера, и порядок сравнения спектров его индуцированного и спонтанного излучений.

  • Лазеры. Основы устройства и их применение

    ЛАЗЕР. 1)Краткие исторические данные. Лазер , источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на

  • Лазеры

    Школа №24 Р Е Ф Е Р А Т по физике ЛАЗЕРЫ Работу выполнил ученик 10 «В» класса Азлецкий Олег Олегович Учитель: Мезина Ольга Олеговна Краснодар, 2000 Содержание.

  • Лазеры

    Муниципальное Общеобразовательное Учреждение Лицей Информационных Технологий РЕФЕРАТ по ФИЗИКЕ на тему: ЛАЗЕРЫ Выполнил: ученик 11 «А» класса Замулин Михаил.

  • Квантовые свойства макроскопических объектов

    Квантовая электроника. Квантовая электроника – область электроники, охватывающая изучение и разработку методов и средств усиления и генерации электромагнитных колебаний на основе эффекта вынужденного излучения атомов, молекул и твердых тел. Часто под термином «Квантовая электроника» понимают совокупность квантовых электронных приборов и устройств — молекулярных генераторов и квантовых усилителей, оптических квантовых генераторов (лазеров) и др., — в которых используется вынужденное излучение.

  • Принцип работы и устройство лазеров

    Принцип работы и устройство лазеров Сталкиваясь с микросистемой, квант света возбуждает атомы и молекулы, отдавая им свою энергию. Наиболее сильное (резонансное) взаимодействие происходит тогда, когда частота колебаний кванта света совпадает с одной из собственных частот колебаний электронов микросистемы.

  • Атомарные газоразрядные лазеры

    Понятие, классификация лазеров по признакам, характеристика основных параметров, их преимущества. Причины конструкции лазеров с внешним расположением зеркал. Описание физических процессов в газовых разрядах, способствующих созданию активной среды.

  • Газовые лазеры

    ПЛАН: 1.Особенности лазерного излучения. 2.Природа лазерного излучения. 3.Разновидности лазеров. Газовые лазеры. Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора оптического квантового генератора, или лазера.

  • Лазеры

    Принцип работы и назначение лазерных устройств, история и основные этапы их разработок, значение в данном процессе академиков Н.Г. Басова и А.М. Прохорова. Первое экспериментальное подтверждение возможности усиления света и развитие данных идей.

  • Устройство и применение лазера

    Лазер - квантовый генератор, излучающий в диапазоне видимого и инфракрасного излучения. Схема устройства лазера и принцип его действия. Временные режимы работы прибора, частота поступления энергии. Применение лазеров в различных отраслях науки и техники.