Название: Способ устранения аберрации в электронных микроскопах
Вид работы: реферат
Рубрика: Физика
Размер файла: 21.74 Kb
Скачать файл: referat.me-343573.docx
Краткое описание работы: Волны в противофазе 1947 г. английский физик Дэннис Габор предложил интересный способ устранения аберрации в электронных микроскопах. Он предложил преобразовывать электронную волну в световую, устранять хорошо известную оптическую аберрацию, а потом снова преобразовывать эту волну в электронную и, уже очищенную от аберрации, использовать в дальнейшем.
Способ устранения аберрации в электронных микроскопах
|


Таким образом, на этом рисунке смогла запечатлеться информация и о фазе световой волны и об её амплитуде, но только это картина суммарной волны, получившейся в результате интерференции, и как бы находящаяся в «зашифрованном» состоянии.
Итак, Лондон, 1947г. Габор пытается поймать световую волну. Для этого он берёт полупрозрачный кубик и освещает его руной лампой[b]
, которая тогда была наилучшим источником световых волн постоянной длины. Таким образом волна от лампы (А1
) попала на кубик, и появилась отражённая волна (А2
), которая, сложившись с волной А1
, образовала новую суммарную световую волну:
А3 = А1 + А2
На пути волны А3 Габор поставил очень чувствительную фотопластинку. В результате на ней зафиксировалась интерференционная картина — перемежающиеся белые и чёрные полосы.
Итак, Габору удалось «заморозить» световую волну, испускаемую кубиком. Но вместе с ней на фотопластинке зафиксировалась и «побочная» полна от лампы. Поэтому перед учёным встал нелёгкий вопрос: как же из этой «смеси» добыть изначальную волну (А2
)?
Чтобы понять смысл метода, предложенного Габором, достаточно представить искомую волну, как производную:
А2 = А3 – А1
Где “ – А1 ” говорит о том, что свет от лампы идёт в обратном направлении, таким образом погашая «лишнюю» волну на фотопластинке и оставляя только волну, отражённую кубиком (А2 ).
Если посмотреть на такую восстановленную волну, то можно увидеть сфотографированный предмет, который словно парит в воздухе.
[a] Аберрация (от лат. Aberratio - уклонение) ¾ буквально отклонение от нормы. В электронных линзах это искажение изображения из-за немоноэнергеичности пучка электронов.
[b] Ртутная лампа — газоразрядный источник света, работающий на ртутных парах, в которых при электрических разрядах возникает главным образом ультрафиолетовый и видимый свет.
Похожие работы
-
Дифракционная структура изображения. Критерии качества оптического изображения
Функция рассеяния точки в случае отсутствия аберраций. Влияние неравномерности пропускания по зрачку на ФРТ. Безаберационная ОПФ. Предельная пространственная частота. Критерии качества оптического изображения. Предельная разрешающая способность.
-
Физика микромира
Содержание: Путь микроскопии 3 Предел микроскопии 5 Невидимые излучения 7 Электроны и электронная оптика 9 Электроны — волны!? 12 Устройство электронного микроскопа 13
-
Майкельсон Альберт Абрахам
Содержание стр. Введение…………………………………………………………………. 2 I. Жизнь и творчество А.А. Майкельсона …………………………….. 3-4 II Об эфирном ветре…………………………………………………….. 5
-
Двумерный оптический сигнал и его информационная структура
Оптическим сигналом называют световую волну, несущую определенную информацию. Особенностью световой волны по сравнению с радиоволной является то, что вследствие малости
-
Голография: основные принципы и применение
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНО- УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Реферат По курсу “Общая физика” На тему: “Голография: основные принципы и применение”
-
Изучение тонких линз и сферических зеркал
Лабораторная работа Изучение тонких линз и сферических зеркал Введение Цель работы: изучение методов определения фокусных расстояний линз и зеркал; наблюдение и оценка их аберраций
-
Современное состояние и перспектива развития полупроводниковых приборов для электрооборудования
8. Современное состояние и перспектива развития полупроводниковых приборов для электрооборудования промышленности. Полупроводниковые приборы силовой электроники – важнейшая элементная база энергосберегающего преобразовательного оборудования. Они выполняют функции мощных электронных управляемых ключей для коммутации тока в схемах преобразования электрической энергии (выпрямление, инвертирование, регулирование переменного и постоянного токов, стабилизация питающих сетей, защита от перенапряжений и т.п.).
-
Интерференция света 2 Основные достижения
ИНТЕРФЕРЕНЦИЯ СВЕТА Томас Юнг (1773 — 1829), английский физик, один из создателей волновой оптики. К 14 годам изучил дифференциальное исчисление, многие языки. Изучал медицину, зоологию, математику, филологию, геофизику. Наиболее фундаментальные труды — по физике, в частности по оптике и акустике.
-
Аберрации оптических систем
Сущность хроматических, волновых и лучевых аберраций, их функции. Характеристика первичных аберраций Зайделя. Особенности сферической аберрации, астигматизма и кривизны поля, дисторсии. Искажения, погрешности изображения оптических систем, их устранение.
-
Продольные и поперечные волны
Интерференция и дифракция волн на поверхности жидкости. Интерференция двух линейных волн, круговой волны в жидкости с её отражением от стенки. Отражение ударных волн. Электромагнитные и акустические волны. Дифракция круговой волны на узкой щели.