Referat.me

Название: Методы одномерной оптимизации

Вид работы: контрольная работа

Рубрика: Информатика и программирование

Размер файла: 50.96 Kb

Скачать файл: referat.me-140136.docx

Краткое описание работы: Метод установления границ начального отрезка локализации минимума. Метод золотого сечения. Оценивание точки минимума внутри найденного отрезка локализации. Программная реализация метода Свенна на языке C++. Текст программы нахождения точки минимума.

Методы одномерной оптимизации

Министерство образования РФ

Волгоградский государственный технический университет

Контрольная работа

Методы одномерной оптимизации

Выполнил:

Группа АУЗ-362

Проверил:

Яновский Т.А.

Волгоград 2011

Метод установления границ начального отрезка локализации минимума

Представляет собой процедуру эвристического типа, предваряющую использование метода одномерного поиска, которому требуется начальный отрезок локализации минимума.

Алгоритм Свенна.

Шаг 1. Выбрать произвольную начальную точку и – начальный положительный шаг.

Шаг 2. Вычислить

Шаг 3. Сравнить :

а) если то, согласно предположению об унимодальности функции, точка минимума должна лежать правее, чем точка . Положить , , k=2 и перейти на шаг 5.

б) если , то вычислить .

Шаг 4. Сравнить :

а) если , то точка минимума лежит между точками и , которые и образуют границы начального отрезка локализации минимума. Положить и завершить поиск.

б) если то, согласно предположению об унимодальности функции, точка минимума должна лежать левее, чем точка . Положить , k=2 и перейти на шаг 5.

Шаг 5. Вычислить .

Шаг 6. Сравнить :

а) если , то

при положить

при положить

и завершить поиск.

б) если , то

при положить

при положить

положить k=k+1 и перейти на шаг 5.

Метод золотого сечения

Необходимо задать начальный отрезок локализации минимума и число , характеризующее желаемую точность вычисления x * .

Шаг 1. Вычислить .

Шаг 2. Найти пробные точки и .

Шаг 3. Вычислить значения функции в пробных точках и .

Шаг 4. Сравнить и :

а) если , то положить .

б) если , положить .

Шаг 5. Вычислить . Если , то положить и закончить поиск, иначе перейти к шагу 3.

Замечание: Данный алгоритм является несколько более медленно сходящимся по сравнению с алгоритмом, точно соответствующим методу “золотого сечения”, из-за того, что на каждой итерации он требует двух вычислений функции f (x ) вместо одного. Однако это делает его более точным, так как при оперировании только с одной новой точкой ошибки округления могут привести к потере интервала, содержащего минимум.

Задание.

1.Самостоятельно найти в литературе по “Методам оптимизации” определение унимодальной функции и разобраться с его смыслом. Это важно, так как вычислительный процесс в любом методе одномерной оптимизации опирается на предположение об унимодальности .

2. Программно реализовать на языке C++ метод Свенна

(Программа должна обеспечить вывод на экран

- начальной точки и шага

на каждой итерации метода:

- номера итерации,

- генерируемой методом новой точки x и значения функции в ней;

а на последней итерации

- отрезка [a, b] локализации минимума функции f(x) и его длины, а также числа итераций.

Метод оценивания точки минимума внутри найденного отрезка локализации минимума

(Программа должна обеспечить на каждой итерации метода вывод на экран:

- номера итерации,

- границ текущего отрезка [a, b],

- внутренних точек и значений функции в них, а затем

- финальной оценки x* точки минимума функции f(x)

- соответствующего точке x* значения функции f(x*)).

3. С помощью программы решить следующие задачи одномерной оптимизации

- f(x) = x2 – 12x. Начальные точки: 1, 3, 0, 10. ∆ = 1, 10

- f(x) = 2x2 +(16/x) Начальные точки: 1,6, 2, 1, 0.1, 10. ∆ = 1, 2

- f(x) = (127/4)x2 -(61/4)x+2. Начальные точки: 0, 1, 2, -10, 10. ∆= 0,5, 1

4.Составить отчет, содержащий:

- Титульный лист с указанием учебной дисциплины, номера и названия задания, ФИО выполнившего работу студента;

- Полностью текст задания, приведенный несколькими строками выше;

- Определение унимодальности;

- Алгоритмы;

- Текст программы на С++;

- Подробное решение одной из предложенных задач – то, что выводит программа при ее решении на каждой итерации;

- Сводную таблицу результатов решения задач, содержащую информацию о тестовой функции, начальных данных задачи и параметрах программы и результаты решения задачи(оценку точки минимума, значение функции в ней, число итераций).

Задание№1

Программно реализовать на языке C++ метод Свенна

(Программа должна обеспечить вывод на экран

- начальной точки и шага на каждой итерации метода:

- номера итерации,

- генерируемой методом новой точки x и значения функции в ней; а на последней итерации отрезка [a, b] локализации минимума функции f(x) и его длины, а также числа итераций.

С помощью программы решить следующие задачи одномерной оптимизации

- f(x) = x2 – 12x. Начальные точки: 1, 3, 0, 10. ∆ = 1, 10

- f(x) = 2x2 +(16/x) Начальные точки: 1,6, 2, 1, 0.1, 10. ∆ = 1, 2

- f(x) = (127/4)x2 -(61/4)x+2. Начальные точки: 0, 1, 2, -10, 10. ∆= 0,5, 1

Текст программы на С++

#include <iostream.h>

#include <conio.h>

#include <math.h>

#include <iomanip.h>

using namespace std;

double f(double ) ;

int _tmain(int argc, _TCHAR* argv[])

{

double t,ll,e,l,xk,yk,a,b;

double x,delta,xp,x1,x2,k=0,y;

int p=0;

cout<<"enter x* ";

cin>>x ;

cout<<"enter t ";

cin>>t;

x1=x-t;

x2=x+t;

if ((f(x-t) >=f(x)) && (f(x+t) >=f(x)))

{

a=x-t;

b=x+t;

p=1;

};

if ((f(x-t) <=f(x)) && (f(x+t) <=f(x)))

{

p=1;

};

xp=x;

if ((f(x-t) >f(x)) && (f(x) >f(x+t)))

{

delta=t;

a=x ;

x=x+t;

}

if ((f(x-t) < f(x)) && (f(x) < f(x+t)))

{

delta=-t;

b=x ;

x=x-t;

}

while ((p!=1))

{

if ((f(x)< f(xp)) && (delta*t >0))

a=xp;

if ((f(x)< f(xp)) && (delta*t <0))

b=xp;

if ((f(x)> f(xp)) && (delta*t >0))

{

b=x;

p=1;

};

if ((f(x)> f(xp)) && (delta*t<0))

{

a=x;

p=1;

};

k++;

cout<< " Номер итерации "<<k<<endl;

cout<< " Ганицы отрезка a="<<a<<" b="<<b<<endl;

xp=x;

x=xp+pow(2.0,k-1)*delta;

}

cout << " a= "<<a<< " b= "<< b<<endl; cout<< " Количество итераций = " << k<< endl;

system("pause");

return 0;

}

double f(double x)

{

double y;

y=x*x-12*x;

return (y);

}

Решение задачи

Функция f(x) = x2 -12xнач. точка x0 = 1 шаг 1

Номер итерации 1

Начальная точка 1

X1 = a = 1

F(x) = -11

Номер итерации 2

Начальная точка 1

Шаг 1

X2 = a= 2

F(x) = -20

Номер итерации 3

Начальная точка 2

Шаг 2

X3 = a = 4

F(x) = -32

Номер итерации 4

Начальная точка 4

Шаг 4

X4 = b = 8

F(x) = -32

Отрезок [a;b] =[2;8] Число итераций = 4

Сводная таблица результатов№1

f ( x ) = x 2 -12 x

Начальная

точка

Шаг Отрезок Число итераций
1 1 [2;8] 4
1 10 [-9;11] 3
3 1 [4;11] 4
3 10 [-7;13] 3
0 1 [2;16] 5
0 10 [0;30] 3
10 1 [2;8] 4
10 10 [0;20] 3

Сводная таблица результатов№2

f(x) = 2x2 +(16/x)

Начальная

точка

Шаг Отрезок Число итераций
1.6 1 [0.6;2.6] 3
1.6 2 [-0.4;3.6] 3
2 1 [1;3] 3
2 2 [0;2] 3
0.1 1 [-0.9;2.1] 3
0.1 2 [-1.9;4.1] 3
10 1 [-5;9] 4
10 2 [-4;8] 3

Сводная таблица результатов№3

f(x) = (127/4)x2 -(61/4)x+2

Начальная

точка

Шаг Отрезок Число итераций
0 0.5 [-0.5;0.5] 2
0 1 [-1;1] 2
1 0.5 [-1;0.5] 3
1 1 [-1;1] 2
2 0.5 [-2;1] 4
2 1 [-2;1] 3
-10 0.5 [-6;6] 6
-10 1 [-6;6] 5
10 0.5 [-6;6] 6
10 1 [-6;6] 5

Задание 2

Найти точки минимума внутри найденного отрезка локализации минимума методом золотого сечения.

(Программа должна обеспечить на каждой итерации метода вывод на экран:

- номера итерации,

- границ текущего отрезка [a, b],

- внутренних точек и значений функции в них,

а затем

- финальной оценки x* точки минимума функции f(x)

- соответствующего точке x* значения функции f(x*)).

Текст программы на С++

# include < iostream . h >

#include <iomanip.h>

#include <math.h>

#include <conio.h>

#include <stdlib.h>

double function ( double ); // вычисляет значение функции в данной точке

void main (void)

{

double a, b, E, F1, F2, LM, x = 0, fc, fd, fx, i = 0, c = 0, d = 0; // Определение переменных

clrscr ();

cout << "Введите границы начального отрезка:" << endl << " a 0 = ";

cin >> a;

cout << "b0 = ";

cin >> b;

cout << "Введите число Е:" << endl << " E = ";

cin >> E ;

clrscr ();

cout << "Границы начальнога отрезка:"<< endl <<"а[" << i << "] = " << a << endl ;

cout << "b[" << i << "] = " << b << endl;

cout << "Число Е = " << E << endl;

F1 = (3 - sqrt(5))*0.5;

F2 = 1 - F1;

do

{

LM = b - a;

cout << endl << "Номер итерации " << i + 1 << endl;

cout << "Границы текущего отрезка:" << endl << "а[" << i << "] = " << a << endl ;

cout << "b[" << i << "] = " << b << endl;

if (LM <= E)

{

x = (a + b)*0.5;

fx = function(x);

cout << "Точка минимума x = " << setprecision(10) << x << endl;

cout << "Значение функции F ( x ) в точке минимума = " << setprecision (10) << fx << endl ;

cout << "Press any key";

getch();

exit(0);

}

else

{

c = a + F1 * LM;

d = a + F2 * LM;

fc = function(c);

fd = function(d);

cout << "Значение внутренней точки с[" << i << "] = " << setprecision (10) << c << endl ;

cout << "Значение внутренней точки d [" << i << "] = " << setprecision (10) << d << endl ;

cout << "Значение функции F ( x ) в точке с[" << i << "] = " << setprecision (10) << fc << endl ;

cout << "Значение функции F ( x ) в точке d [" << i << "] = " << setprecision (10) << fd << endl ;

}

if (fc == fd)

{

a = c;

b = d;

x = (a + b)*0.5;

fx = function(x);

cout << "Точка минимума x = " << setprecision(10) << x << endl;

cout << "Значение функции F ( x ) в точке минимума = " << setprecision (10) << fx << endl ;

cout << "Press any key";

getch();

exit(0);

}

else

{

if (fc < fd)

{

a = a;

b = d;

i++;

}

else

{

a = c;

b = b;

i++;

}

}

}

while (1);

}

double function (double x)

{

double y;

y = x * x - 12 * x;

return ( y );

}

Решение задачи

Функция f(x) = x2 -12x

Границы начального отрезка:

а[0] = -9

b[0] = 11

Число Е = 0.1

Номер итерации 1

Границы текущего отрезка:

а[0] = -9

b[0] = 11

Значение внутренней точки с[0] = -1.36

Значение внутренней точки d[0] = 3.36

Значение функции F(x) в точке с[0] = 18.17

Значение функции F(x) в точке d[0] = -29.03

Номер итерации 2

Границы текущего отрезка:

а[1] = -1.36

b[1] = 11

Значение внутренней точки с[1] = 3.36

Значение внутренней точки d[1] = 6.27

Значение функции F(x) в точке с[1] = -29.03

Значение функции F(x) в точке d[1] = -35.92

Номер итерации 3

Границы текущего отрезка:

а[2] = 3.36

b[2] = 11

Значение внутренней точки с[2] = 6.27

Значение внутренней точки d[2] = 8.08

Значение функции F(x) в точке с[2] = -35.92

Значение функции F(x) в точке d[2] = -31.66

Номер итерации 4

Границы текущего отрезка:

а[3] = 3.36

b[3] = 8.08

Значение внутренней точки с[3] = 5.16

Значение внутренней точки d[3] = 6.27

Значение функции F(x) в точке с[3] = -35.3

Значение функции F(x) в точке d[3] = -35.92

Номер итерации 5

Границы текущего отрезка:

а[4] = 5.16

b[4] = 8.08

Значение внутренней точки с[4] = 6.27

Значение внутренней точки d[4] = 6.96

Значение функции F(x) в точке с[4] = -35.92

Значение функции F(x) в точке d[4] = -35.06

Номер итерации 6

Границы текущего отрезка:

а[5] = 5.16

b[5] = 6.96

Значение внутренней точки с[5] = 5.85

Значение внутренней точки d[5] = 6.27

Значение функции F(x) в точке с[5] = -35.97

Значение функции F(x) в точке d[5] = -35.92

Номер итерации 7

Границы текущего отрезка:

а[6] = 5.16

b[6] = 6.27

Значение внутренней точки с[6] = 5.58

Значение внутренней точки d[6] = 5.85

Значение функции F(x) в точке с[6] = -35.83

Значение функции F(x) в точке d[6] = -35.97

Номер итерации 8

Границы текущего отрезка:

а[7] = 5.58

b[7] = 6.27

Значение внутренней точки с[7] = 5.85

Значение внутренней точки d[7] = 6.01

Значение функции F(x) в точке с[7] = -35.97

Значение функции F(x) в точке d[7] = -35.99

Номер итерации 9

Границы текущего отрезка:

а[8] = 5.85

b[8] = 6.27

Значение внутренней точки с[8] = 6.01

Значение внутренней точки d[8] = 6.11

Значение функции F(x) в точке с[8] = -35.999

Значение функции F(x) в точке d[8] = -35.986

Номер итерации 10

Границы текущего отрезка:

а[9] = 5.85

b[9] = 6.11

Значение внутренней точки с[9] = 5.95

Значение внутренней точки d[9] = 6.01

Значение функции F(x) в точке с[9] = -35.997

Значение функции F(x) в точке d[9] = -35.999

Номер итерации 11

Границы текущего отрезка:

а[10] = 5.95

b[10] = 6.11

Значение внутренней точки с[10] = 6.01

Значение внутренней точки d[10] = 6.05

Значение функции F(x) в точке с[10] = -35.999

Значение функции F(x) в точке d[10] = -35.997

Номер итерации 12

Границы текущего отрезка:

а[11] = 5.95

b[11] = 6.05

Значение внутренней точки с[11] = 5.99

Значение внутренней точки d[11] = 6.01

Значение функции F(x) в точке с[11] = -35.999

Значение функции F(x) в точке d[11] = -35.999

Номер итерации 13

Границы текущего отрезка:

а[12] = 5.95

b[12] = 6.01

Точка минимума x = 5.981

Значение функции F(x) в точке минимума = -35.999999

f(x) = x2 -12x
отрезки Точка минимума Значение функции Число итераций
0.1 [2;8] 6.003 -35.999999 10
[-9;11] 5.981 -35.999999 13
[4;11] 5.996 -35.999999 10
[-7;13] 6.018 -35.999966 13
[2;16] 6.006 -35.999957 12
[0;30] 6.002 -35.999997 13
[2;8] 6.003 -35.999999 10
[0;20] 6.005 -35.999965 13
f(x) = 2x2 +(16/x)
отрезки Точка минимума Значение функции Число итераций
0.01 [0.6;2.6] 1.5875 15.119055 13
[-0.4;3.6] 1.5820 15.119055 15
[1;3] 1.5861 15.119055 14
[0;2] 1.5874 15.119052 13
[-0.9;2.1] 1.5880 15.119050 13
[-1.9;4.1] 1.5864 15.119057 15
[-5;9] 1.5862 15.119061 17
[-4;8] 1.5866 15.119055 16
f(x) = (127/4)x2 - (61/4)x+2
Отрезки Точка минимума Значение функции Число итераций
0.001 [-0.5;0.5] 0.2418 0.18548 16
[-1;1] 0.2418 0.18548 17
[-1;0.5] 0.2420 0.18548 17
[-1;1] 0.2418 0.18548 17
[-2;1] 0.2420 0.18548 18
[-2;1] 0.2420 0.18548 18
[-6;6] 0.2418 0.18548 21
[-6;6] 0.2418 0.18548 21
[-6;6] 0.2418 0.18548 21
[-6;6] 0.2418 0.18548 21

Похожие работы

  • Создание функциональной модели вычисления минимума заданной функции методом парабол

    Постановка задачи. Математические и алгоритмические основы решения. Функциональные модели и блок-схемы решения. Программная реализация решения. Пример выполнения программы. Методы, использующие исключение отрезков. Учет информации о значениях функции.

  • Одномерная оптимизация функций методом золотого сечения

    Создание программы в среде программирования MatLab для решения задачи одномерной оптимизации (нахождение минимума и максимума заданных функций) методом золотого сечения, построение блок-схемы алгоритма и графическое изображение исследованных функций.

  • Решение нелинейных уравнений

    ЧИСЛЕННОЕ . 1п. Общий вид нелинейного уравнения F(x)=0 Нелинейные уравнения могут быть двух видов: Алгебраические anxn + an-1xn-1 +… + a0 = 0 Трансцендентные- это уравнения в которых х является аргументом

  • Расчетно-графическая работа

    §1. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. 1п. Общий вид нелинейного уравнения F(x)=0 Нелинейные уравнения могут быть двух видов: Алгебраические

  • Перспективные архитектуры генетического поиска

    В последнее время появились новые «нестандартные» архитектуры генетического по-иска, позволяющие в большинстве случаев решать проблему предварительной сходимости алгоритмов. Это методы миграции и искусственной селекции.

  • Программа вычисления минимума заданной функции

    Постановка задачи и ее формализация. Поиск значений интерполяционного многочлена в точках x1 и x2. Поиск минимума функции F(x) на отрезке [a;b]. Проверка условий сходимости методов. Тестирование программных модулей. Детализированная схема алгоритма.

  • Итерационные методы решения нелинейных уравнений

    Решение нелинейных уравнений методом простых итераций и аналитическим, простым и модифицированным методом Ньютона. Программы на языке программирования Паскаль и С для вычислений по вариантам в порядке указанных методов. Изменение параметров задачи.

  • Решение нелинейных уравнений

    Сравнительный анализ итерационных методов решения нелинейных алгебраических и трансцендентных уравнений. Простейший алгоритм отделения корней нелинейных уравнений. Метод половинного деления. Геометрический смысл метода Ньютона. Метод простой итерации.

  • Нахождение корней уравнения методом простой итерации (ЛИСП-реализация)

    Изучение способов решения линейных и квадратных уравнений методом простой итерации: доказательство теоремы о сходимости и геометрическая интерпретация. Анализ математического решения задачи, ее функциональной модели, блок-схемы и программной реализации.

  • Решение математических задач с помощью алгоритмического языка Turbo Pascal, Microsoft Excel, пакета MathCAD и разработка программ в среде Delphi

    Решение циклических программ и программ вычисления функции с условием. Уравнение в табличном редакторе Microsoft Excel и в Turbo Pascal. Вычисление определенного интеграла методом прямоугольников, трапеции, Симпсона. Линейные и нелинейные уравнения.