Название: Поляризационные приборы
Вид работы: реферат
Рубрика: Технология
Размер файла: 108.66 Kb
Скачать файл: referat.me-335704.zip
Краткое описание работы: Московский ордена Ленина, ордена Октябрьской Революции и ордена Трудового Красного Знамени ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э.Баумана.
Поляризационные приборы
Московский
ордена Ленина,
ордена Октябрьской
Революции и
ордена Трудового
Красного Знамени
ГОСУДАРСТВЕННЫЙ
ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ
имени Н.Э.Баумана.
________________________________________________
Факультет РЛ
Кафедра РЛ3
Реферат
по
дисциплине
"Поляризационные
приборы"
студентки
Сальниковой Любови Юрьевны
группа РЛ 3-101.
Преподаватель
Зубарев Вячеслав Евгеньевич
Введение
Поляризационные приборы основаны на явлении поляризации света и предназначены для получения поляризованного света и изучения тех или иных процессов, происходящих в поляризованных лучах.
Поляризационные приборы широко применяют в кристаллографии и петрографии для исследования свойств кристаллов; в оптической промышленности для определения напряжений в стекле; в машиностроении и приборостроении для изучения методом фотоупругости напряжений в деталях машин и сооружений; в медицине; в химической, пищевой, фармацевтической промышленности для определения концентрации растворов. Поляризационные приборы получили распространение также для изучения ряда явлений в электрическом и магнитном поле.
Приборы для определения внутренних натяжений
Т-образные установки МИСИ
Т-образные установки МИСИ предназначаются для изучения деформации методом оптически чувствительных покрытий.
В полярископах Т-образного вида (рис. 1) свет от источника 1 проходит поляризатор 2, отражается от полупрозрачного зеркала 3, проходит оптически чувствительное покрытие 4 и, отразившись от поверхности образца 5, входит в анализаторную часть установки. Она содержит анализатор 8, сменные компенсатор 6 и пластинку, 7 в 1/4 волны и экран полярископа 9.
	 Рис. 1. Схема
	Т-образного
	полярископа
	Рис. 1. Схема
	Т-образного
	полярископа
В соответствии со схемой, представленной на рис. 1, разработана Т-образная установка (рис. 2), получившая наименование отражательного полярископа.

Рис. 2. Отражательный полярископ МИСИ по Т-образной схеме.Источник света 1 (лампа ДРШ-250) с помощью конденсора 2 проецируется на диафрагму 4 (диаметр отверстия 2 мм), помещенную в фокусе объектива 8.
Для снижения влияния инфракрасной радиации источника в схему введен теплофильтр 3. Расходящийся плоскополяризованный световой поток после диафрагмы 4 проходит поляризатор 5, пластинку 6 в 1/4 волны, светофильтр 7 и попадает на объектив 8 (фокусное расстояние 300 мм). После объектива свет параллельным пучком проходит две полупрозрачные пластины 9 и 10, оптически чувствительное покрытие 11 и попадает на образец 12. После отражения в обратном ходе свет попадает в анализаторную часть установки, где объективом 13 фокусируется на диафрагму 16. Поляризационная картина после дополнительного светофильтра 14 и анализатора 15 рассматривается на экране полярископа l7.
	 
		
Рис. 3. Схема V-образного полярископа
К установкам данного типа относятся также отражательный полярископ OП-2, переносный малогабаритный полярископ ОП-3 и др.V-образные полярископы
V-образные полярископы используются для тех же целей, что и Т-образные. В полярископах V-образного вида (рис. 3) естественный монохроматический свет от источника 1 проходит поляризатор 2, становясь при этом плоскополяризованным. Проходя пластинку 3 в 1/4 волны и оптически чувствительное покрытие 4, свет отражается от объекта исследования 5 (от пластически деформируемого образца), проходит вторую пластинку 6 в 1/4 волны, анализатор 7 и образует изохроматическую картину на экране полярископа 8.
Для получения картины хорошего качества варьируется толщина покрытия 4 (в пределах 0,5 — 1,5 мм и угол a между оптическими осями поляризаторной и анализаторной части (в пределах 6°ё15°)
	 Рис. 4. Схема
	кругового
	поляриметра
	СМ
	Рис. 4. Схема
	кругового
	поляриметра
	СМ
Приборы для определения угла поворота плоскости поляризации
Круговой поляриметр СМ
Круговой поляриметр СМ (рис. 4) предназначен для определения угла поворота плоскости поляризации в жидких оптически активных веществах.
Осветитель 1 (лампа накаливания или натриевая лампа ДНаО140) устанавливается в фокальной плоскости оптической системы 8. В конструкции узла осветителя предусмотрены подвижки для установки нити накала лампы на оптической оси. При работе с лампой накаливания перед оптической системой 3 вводится желтый светофильтр 2. Параллельный монохроматический пучок лучей, выходящий из системы 3, проходит через поляризатор 4 (поляроид, заклеенный между двумя стеклами), кварцевую пластинку 5, создающую совместно с поляроидом полутеневую картину с тройным полем зрения, и кварцевую кювету 6 с исследуемым раствором. Обычно длина кюветы выбирается такой, чтобы концентрации 10-3 кг/см3 соответствовал угол поворота плоскости поляризации y = 1°.
После кюветы расположен анализатор 7, аналогичный поляризатору 4, и телескопическая система, состоящая из объектива 10 и окуляра 11, через который ведется наблюдение при уравнивании освещенностей частей поля зрения.
Отсчет осуществляется по градусной шкале 8 неподвижного лимба (с оцифровкой от 0° до 360°) с помощью двух диаметрально противоположных нониусов 9 (шкалы нониусов имеют по 20 делений; цена одного деления 0,05°). Из показаний двух нониусов берут среднее значение (для учета эксцентриситета лимба). Отсчет снимается при наблюдении лимба и нониуса через лупы 12.
Автоматический спектрополяриметр

Рис. 5. Схема автоматического спектрополяриметраАвтоматический спектрополяриметр (рис. 5) предназначен для измерения угла поворота плоскости поляризации в диапазоне длин волн 0,24ё0,60 мкм.
Источник света 1 сменный — лампа накаливания при работе в видимой части спектра и ртутная лампа сверхвысокого давления для измерения в ультрафиолетовой области. Излучение от лампы 1 проходит через двойной монохроматор 2 (с зеркальной оптикой и кварцевыми призмами), попадает на электромеханический поляризатор-модулятор 4, проходит исследуемый образец 5, анализатор 6 и попадает на фотоумножитель 7.
В зависимости от угла между направлениями колебаний, пропускаемых поляризатором и анализатором, меняется частота переменной составляющей потока, попадающего на фотоумножитель.
Сигнал, преобразованный в электрический и усиленный в усилителе 8, питает управляющую обмотку реверсного двигателя, который через редуктор вращает анализатор 6 до тех пор, пока из сигнала не исчезнет первая гармоника. Вращение анализатора регистрируется на самописец 3, связанном передающим устройством со шкалой длин волн монохроматора.
С помощью описанного прибора измеряется вращательная дисперсия образцов с поглощением до 80%. Предел измеряемых углов вращения ±2°.
Список использованной литературы
- Лабораторные оптические приборы: Учебное пособие для приборостроительных и машиностроительных ВУЗов. Г. И. Федотов, Р. С. Ильин, Л. А. Новицкий, В. Е. Зубарев, А. С. Гоменюк. 
Оглавление
Введение 3
Приборы для определения внутренних натяжений 3
Т-образные установки МИСИ 3
V-образные полярископы 6
Приборы для определения угла поворота плоскости поляризации 8
Круговой поляриметр СМ 8
Автоматический спектрополяриметр 9
Список использованной литературы 11
Оглавление 11
Московский
ордена Ленина,
ордена Октябрьской
Революции и
ордена Трудового
Красного Знамени
ГОСУДАРСТВЕННЫЙ
ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ
имени Н.Э.Баумана.
________________________________________________
Факультет РЛ
Кафедра РЛ3
Реферат
по
дисциплине
"Поляризационные
приборы"
студента
Майорова Павла Леонидовича
группа РЛ 3-101.
Преподаватель
Зубарев Вячеслав Евгеньевич
Введение
Поляризационные приборы основаны на явлении поляризации света и предназначены для получения поляризованного света и изучения тех или иных процессов, происходящих в поляризованных лучах.
Поляризационные приборы широко применяют в кристаллографии и петрографии для исследования свойств кристаллов; в оптической промышленности для определения напряжений в стекле; в машиностроении и приборостроении для изучения методом фотоупругости напряжений в деталях машин и сооружений; в медицине; в химической, пищевой, фармацевтической промышленности для определения концентрации растворов. Поляризационные приборы получили распространение также для изучения ряда явлений в электрическом и магнитном поле.
Приборы для определения внутренних натяжений
Большая поляризационная установка
Большая поляризационная установка (рис. 1) предназначена для исследования напряжений в прозрачных моделях деталей машин и сооружений.
Источник света 1 (кинопроекционная лампа К12 или ртутная лампа СВДШ-250) размещен в фокальной плоскости конденсора 2 (фокусное расстояние 180 мм). Параллельный пучок лучей после конденсора проходит через светофильтр 3, поляризатор 4 (поляроид, вклеенный между защитными стеклами), слюдяную пластинку 5 в 1/4 волны и падает на исследуемый образец 6.
	 Рис. 1. Схема
	большой поляризационной
	установки
	Рис. 1. Схема
	большой поляризационной
	установки
Интерференционную картину наблюдают через защитное стекло 14 и зеркало 16. Ее можно также проецировать с большим увеличением на экране 13.
Поляризатор, анализатор и пластинки в 1/4 волны вращаются в пределах 0ё90°; угол поворота отсчитывается по шкале с ценой деления 1°. Пластинки в 1/4 волны можно выводить из оптической схемы.
Конструктивно прибор выполнен в виде отдельных узлов: осветитель, в котором смонтированы детали 1—5; нагрузочное устройство, включающее образец 6; фотокамера, содержащая затвор с диафрагмой 10 и оптические детали 7—9 и 11—16, рассчитанная на фотопластинки размером 13ґ18 м.
Значительное усовершенствование процесса поляризационных измерений и повышение точности достигается при использовании объективных методов измерения. В качестве примеров приборов такого типа рассмотрим схему фотоэлектрического поляриметра.
Фотоэлектрический модуляционный поляриметр
Фотоэлектрический модуляционный поляриметр (рис. 2) позволяет измерять в исследуемом объекте разность фаз лучей о и е, меняющуюся во времени.
Лучистый поток от ртутной лампы 1 сверхвысокого давления проходит через иитерференционный светофильтр 2 (с максимумом пропускания при l=0,436 мкм и l=0,546 мкм), поляризатор 3 и исследуемый объект 4, ориентированный так, что направления колебаний в лучах о и е составляют углы p/4 с направлением колебаний в луче, вышедшем из поляризатора. Выходящий из объекта 4 эллиптически поляризованный свет попадает на пластину 5, изготовленную из кристалла ADP1, вырезанную так, что ее плоскости перпендикулярны оптической оси.
	 Рис. 2. Схема
	фотоэлектрического
	 модуляционного
	поляриметра
	Рис. 2. Схема
	фотоэлектрического
	 модуляционного
	поляриметра
Самописец 7 фиксирует углы поворота анализатора, причем измеряемая разность фаз равна удвоенному углу поворота анализатора.
Погрешность измерения составляет в среднем приблизительно 20'.0
Полярископ-поляриметр ПКС-56
Полярископ-поляриметр ПКС-56 (рис. 3) служит для измерения двойного лучепреломления в стекле. Он состоит из источника света 1 (лампа накаливания), матового стекла 2, поляризатора 3 (поляроид, вклеенный между стеклами), пластинки 5 в 1/4 волны, анализатора 6 (аналогичного поляризатору 3) и светофильтра 7 (на длину волны 0,54 мкм).

Рис. 3. Схема полярископа-поляриметра ПКС-56Порядок измерения на приборе следующий: скрещивают поляризатор и анализатор (отсчет по лимбу анализатора 0°, поле зрения темное); устанавливают образец 4 (если он обладает двойным лучепреломлением, то в поле зрения наблюдается просветление); поворачивают анализатор до максимального потемнения в середине образца; по лимбу отсчитывают угол поворота Db анализатора.
Зная Db,
можно определить
 из соотношения
из соотношения

где l — толщина образца в направлении просмотра.
При l=10
мм погрешность
измерения 
 составляет
±3Ч10-7.
С увеличением
l
погрешность
уменьшается.
составляет
±3Ч10-7.
С увеличением
l
погрешность
уменьшается.
Переносный
малогабаритный
поляриметр
ИГ-86
	 Рис. 4.
	Переносный
	малогабаритный
	поляриметр
	ИГ-86
	Рис. 4.
	Переносный
	малогабаритный
	поляриметр
	ИГ-86
Источник света 1 (лампа СЦ-61) размещен в фокусе объектива 3. Защитные стекла 2, 7 и 12 предохраняют прибор от попадания в него загрязнений. Параллельный пучок лучей проходит поляризационный светофильтр (поляризатор 4), полупрозрачное зеркало 8 и, отразившись от светоделительного слоя, падает на оптически чувствительное покрытие 6, нанесенное на исследуемый объект 5. После отражения от покрытия свет попадает в анализаторный узел прибора, проходит компенсатор 9, анализатор 10 (аналогичный поляризатору 4) и попадает в зрительную трубу (сменное увеличение 2 и 10ґ) со шкалой в совмещенной фокальной плоскости объектива 11 и окуляра 13. Перед глазной линзой окуляра и выходным зрачком 15 устанавливается светофильтр 14. Такая оптическая схема получила наименование Т-образной схемы.
Предел измерения оптической разности хода — от 0 до 5 интерференционных порядков. Погрешность измерения — 0,05 интерференционных порядков.
Габариты прибора 400ґ400ґ800 мм; масса около 2 кг.
Список использованной литературы
- Лабораторные оптические приборы: Учебное пособие для приборостроительных и машиностроительных ВУЗов. Г. И. Федотов, Р. С. Ильин, Л. А. Новицкий, В. Е. Зубарев, А. С. Гоменюк. 
Оглавление
Введение 3
Приборы для определения внутренних натяжений 3
Большая поляризационная установка 3
Фотоэлектрический модуляционный поляриметр 5
Полярископ-поляриметр ПКС-56 8
Переносный
	малогабаритный
	поляриметр
ИГ-86	9
Список использованной литературы 11
Оглавление 11
1 Кристалл ADP — искусственный одноосный кристалл дигидрофосфата аммония (NH4H2PO4).
Похожие работы
- 
							Тяговый расчет трактора
							МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРОИНЖЕНЕРНЫЙ УНИВЕРСИТЕТ ИМЕНИ В.П.ГОРЯЧКИНА 
- 
							Субъекты стандартизации
							Субъектами стандартизации являются: центральный орган исполнительной власти в сфере стандартизации; совет по стандартизации; технические комитеты по стандартизации; 
- 
							Расчет сборочной машины для сборки детали Пластина контактная
							Саратовский государственный технический университет Кафедра СИН Курсовая работа по курсу: Основы конструирования Выполнил студент группы РТС-51 
- 
							Расчет винтового гибочного пресса
							Московский Государственный Авиационный Технологический университет им. К.Э.Циолковского Кафедра “Детали машин и ТММ” Курсовое задание 
- 
							Проектирование привода ленточного транспортёра
							dбmin тау к dae2 б da2 т дельта к da2 т Delta2 Delta2 ΔС Tк1 б 449.6 50.0 58.0 160.5 236.08 30.76 338.29 54.17 236.08 236.08 1.354 77.55 4.33E+06 37.79 
- 
							Оптические датчики газового состава
							Московский ордена Ленина, ордена Октябрьской Революции и ордена Трудового Красного Знамени ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э.Баумана. 
- 
							Монтаж усилителя
							ПРОФЕССИОНАЛЬНОЕ УЧИЛИЩЕ № 199 К У Р С О В О Й П Р О Е К Т НА ТЕМУ « МОНТАЖ УСИЛИТЕЛЯ » ВЫПОЛНИЛ ИВАНОВ АЛЕКСЕЙ ГРУППА - Р-23 М О С К В А 1998 Г О Д ВВЕДЕНИЕ Конец прошлого века был отмечен важным событием, которое, может быть, и не было по достоинству оценено современниками, но и в дальнейшем оказало огромное влияние на развитие промышленности, социальные отношения, культуру и быт людей следующего ХХ века, того самого века, в котором мы живем. 
- 
							Машинное гравирование
							Государственный комитет по высшему образованию РФ Новгородский Государственный Университет имени Я. Мудрого Кафедра ХиПОМ Отчет по практической работе № 2 
- 
							Валы и оси
							Выполнила Ольга Кирюшина студенка Технического университета города Омска Сдавался Меркушевой Ольге Сергеевне кафедра маркетинга и предпринимательства как 
- 
							Автоматическая гальваническая линия покрытий никель-хром
							№ строки Формат Позиция Обозначение Наименование Кол. Прим. Документация ДП-НГТУ-2102-(93-АМ)-70-99 Сборочный чертеж Сборочные единицы Рама Каретка