Название: Спроектировать привод конвейера по заданной схеме и характеристикам (WinWord97 + Corel Draw)
Вид работы: реферат
Рубрика: Технология
Размер файла: 69.76 Kb
Скачать файл: referat.me-335921.zip
Краткое описание работы: Содержание: и наименование раздела стр. Задание Исходные данные 1. Энергосиловой и кинематический расчет 1.1. Определение общего коэффициента полезного действия привода
Спроектировать привод конвейера по заданной схеме и характеристикам (WinWord97 + Corel Draw)
Содержание:
| № и наименование раздела | №стр. | 
| Задание | 3 | 
| Исходные данные | 4 | 
| 1. Энергосиловой и кинематический расчет | 5 | 
| 1.1. Определение общего коэффициента полезного действия привода | 5 | 
| 1.2. Выбор электродвигателя | 5 | 
| 1.3. Определение мощностей, частот вращения и крутящих моментов на валах. | 5 | 
| 2. Расчет зубчатой передачи | 7 | 
| 2.1. Проектировочный расчет зубчатой передачи на контактную выносливость | 7 | 
| 2.2. Проверочный расчет зубчатой цилиндрической передачи на контактную выносливость | 11 | 
| 2.3. Проверочный расчет зубчатой цилиндрической передачи на выносливость при изгибе | 12 | 
| 3. Расчет валов | 14 | 
| 3.1. Усилие на муфте | 14 | 
| 3.2. Усилия в косозубой цилиндрической передаче | 15 | 
| 4. Разработка предварительной компоновки редуктора | 16 | 
| 5. Проектный расчет первого вала редуктора | 17 | 
| 6. Построение эпюр | 18 | 
| 6.1. Определение опорных реакций | 19 | 
| 6.2. Построение эпюр изгибающих и крутящих моментов | 20 | 
| 6.3. Определение диаметров валов в опасных сечениях | 20 | 
| 7. Выбор подшипников качения по динамической грузоподъемности для опор валов редуктора | 22 | 
| 7.1. Выбор подшипников качения для первого вала редуктора | 22 | 
| 7.2. Проектный расчет второго вала редуктора и подбор подшипников | 26 | 
| 8. Уточнённый расчёт на усталостную прочность одного из валов редуктора | 27 | 
| 8.1. Определение запаса усталостной прочности в сечении вала "А–А" | 28 | 
| 8.2. Определение запаса усталостной прочности в сечении вала "Б–Б" | 28 | 
| 8.3. Определение запаса усталостной прочности в сечении вала "B–B" | 29 | 
| 9. Подбор и проверочный расчет шпонок | 30 | 
| 9.1. Для участка первого вала под муфту | 30 | 
| 9.2. Для участка первого вала под шестерню | 30 | 
| 9.3. Для участка второго вала под колесо | 30 | 
| 9.4. Для участка второго вала под цепную муфту | 31 | 
| 10. Проектирование картерной системы смазки | 32 | 
| 10.1. Выбор масла | 32 | 
| 10.2. Объем масляной ванны | 32 | 
| 10.3. Минимально необходимый уровень масла | 32 | 
| 10.4. Назначение глубины погружения зубчатых колес | 32 | 
| 10.5. Уровень масла | 32 | 
| 10.6. Смазка подшипников качения консистентными смазками | 32 | 
| Литература | 33 | 
| Приложение | 
Nвых = 2,8кВт
u = 5,6; n = 1500 об/мин
График нагрузки:

T1 = Tmax
Q1 = 1
1 = 0,1
Q2 = 0,8
Lh = 10000ч
1. Энергосиловой и кинематический расчет
1.1. Определение общего коэффициента полезного действия привода
общ = м1 ґ з ґ м2
3 – кпд зубчатой передачи с учетом потерь в подшипниках
3 = 0.97
м1 – кпд МУВП
м1 = 0,99
м2 – кпд второй муфты
м2 = 0.995
1.2. Выбор электродвигателя
Nвход = Nвых / общ
Nвход = 2.8 / 0.955 = 2.93 кВт
Выбираем двигатель 4А90L4
N = 2.2Квт
n = 1425 об/мин
d = 24мм
 = (2.9 – 2.2) / 2.2 ґ 100% = 31.8% > 5% – этот двигатель не подходит
Беру следующий двигатель 4А100S4
N = 3.0кВт
n = 1435 об/мин
d = 28мм
1.3. Определение мощностей, частот вращения и крутящих моментов на валах.
1.3.1. Вал электродвигателя ("0")
N0 = Nвых = 2,93кВт
n0 = nдв = 1435 об/мин
T0 = 9550 ґ (N0 / n0) = 9550 ґ (2.93 / 1435) = 19.5Hм
1.3.2. Входной вал редуктора ("1")
N1 = N0 ґ м1 = 2,93 ґ 0,99 = 2,9кВт
n1 = n0 = 1435об/мин
Т1 = 9550 ґ (N1 / n1) = 9550 ґ (2.9 / 1435) = 19.3 Hм
1.3.3. Выходной вал редуктора ("2")
N2 = N1 ґ 3 = 2.9 ґ 0.97 = 2.813кВт
n2 = n1 / u = 1435 / 5.6 = 256.25 об/мин
Т2 = 9550 ґ (2,813 / 256,25) = 104,94Нм
1.3.4. Выходной вал привода ("3")
N3 = N2 ґ м2
N3 = 2.813 ґ 0.995 = 2.8кВт
n3 = n2 = 256.25 об/мин
Т3 = 9550 ґ N3 / n3
Т3 = 9550 ґ 2,8 / 256,25 = 104,35Нм
2. Расчет зубчатой передачи
2.1. Проектировочный расчет зубчатой передачи на контактную выносливость
2.1.1. Исходные данные
n1 = 1435об/мин
n2 = 256.25об/мин
Т1 = 19,3Нм
Т2 = 104,94Нм
u = 5.6
Вид передачи – косозубая
Ln = 10000ч
2.1.2. Выбор материала зубчатых колес
Сталь 45
HB=170…215 – колеса
Для зубьев шестерни  HB1 = 205
Для зубьев колеса  HB2 = 205
2.1.3. Определение допускаемого напряжения на контактную выносливость
[GH]1,2 = (GH01,2 ґ KHL1,2) / SH1,2 [МПа]
GH0 – предел контактной выносливости поверхности зубьев
GH0 = 2HB + 70
GH01 = 2 ґ 205 + 70 = 480МПа
GH02 = 2 ґ 175 + 70 = 420МПа
SH – коэффициент безопасности
SH1 = SH2 = 1.1
KHL – коэффициент долговечности
KHL = 6  NH0 / NHE
NH0 – базовое число циклов
NH0 = 1.2 ґ 107
NHE – эквивалентное число циклов при заданном переменном графике нагрузки
NHE = 60n1,2Lh(T1 / Tmax)3 ґ Lhi / Lh
NHE = 60n1,2Lh(1Q13 + 2Q23 + 3Q33)
n – частота вращения вала шестерни или вала зубчатого колеса
Lh – длительность службы
Lh = 10000ч
NHE1 = 60 ґ 1435 ґ 10000 (0.1 ґ 13 + 0.9 ґ 0.83) = 6 ґ 101 ґ 1.435 ґ 103 ґ 104(0.1 + 0.461) = 48.28 ґ 107
KHL1 = 6 1.2 ґ 107 / 48.28 ґ 107 = 0.539
KHL2 = 6 1.2 ґ 107 / 8.62 ґ 107 = 0.72
Принимаю KHL1 = KHL2 = 1
[GH]1 = 480 ґ 1 / 1.1 = 432,43МПа
[GH]1 = 420 ґ 1 / 1.1 = 381,82МПа
В качестве допускаемого контактного напряжения принимаю
[GH] = 0.5([GH]1 + [GH]2)
[GH] = 0.5(432.43 + 381.82) = 407.125
должно выполняться условие
[GH] = 1.23[GH]min
469.64 = 1.23 ґ 981.82
407.125 < 469.64
2.1.4. Определение межосевого расстояния
a = Ka(u + 1) 3 T2KH / (u[GH])2ba
Ka = 430МПа
ba – коэффициент рабочей ширины зубчатого венца
ba = 2bd / (u+1)
bd = 0.9
ba = 2ґ0.9 / (5.6 + 1) = 0.27
KH – коэффициент распределения нагрузки по ширине зубчатого венца
KH = 1.03
a = 430 ґ 6.6 3 104.94 ґ 1.03 / (5.6 ґ 407.125)2 ґ 0.27 = 2838 ґ 3 108.088 / 1403444.88 = 120.75
2.1.6. Согласование величины межосевого расстояния с ГОСТ2185–66
Принимаю a = 125
2.1.7. Определение модуля зацепления
m = (0.01…0.02)a
m = 0.015ґ125 = 1.88мм
2.1.8. Определение числа зубьев шестерни "z1" и колеса "z2"
zi = 2acos/mn
 – угол наклона зубьев
Принимаю  = 15
zc = 2 ґ 125 ґ 0.966 / 2.5 = 120.8  120
Число зубьев шестерни
z1 = z0 / (u+1) = 120 / 6.6 = 18.18  18
zmin = 17cos3 = 15.32
z1  zmin
Число зубьев колеса
z2 = zc – z1 = 120 – 18 = 120
uф = z2 / z1 = 102 / 18 = 5.67
u = 1.24%
2.1.9. Уточнение угла наклона зубьев
ф = arcos((z1ф + z2ф) mn / 2a)
ф = arcos((102 + 18) ґ 2 / 2 ґ 125) = arcos0.96 = 1512'4''
2.1.10. Определение делительных диаметров шестерни и колеса
d1 = mn ґ z1 / cosф = 2.18 / 0.96 = 37.5мм
d2 = mn ґ z2 / cosф = 2.102 / 0.96 = 212.5мм
2.1.11. Определение окружной скорости
V1 = d1n1 / 60000 = 3.14 ґ 37.5 ґ 1435 / 60000 = 2.82 м/с
2.1.12. Назначение степени точности n` передачи
V1 = 2.82 м/с  n` = 8
2.1.13. Уточнение величины коэффициента ba
ba = (Ka3 (uф + 1)3 T2 KH) / (ua[bn]2 a3)
ba = 4303 ґ
6.63 ґ
104.94 ґ
1.03 / (5.6 ґ
407.125)2 ґ
1253 =
= 2.471 ґ
1012 / 10.152 ґ
1012 = 0.253
По ГОСТ2185–66  ba = 0.25
2.1.14. Определение рабочей ширины зубчатого венца
b = ba ґ a
b = 0.25 ґ 125 = 31.25
b = 31
2.1.15. Уточнение величины коэффициента bd
bd = b / d1
bd = 31.25 / 37.5 = 0.83
2.2. Проверочный расчет зубчатой цилиндрической передачи на контактную выносливость
2.2.1. Уточнение коэффициента KH
KH = 1.03
2.2.2. Определение коэффициента FHV
FHV = FFV = 1.1
2.2.3 Определение контактного напряжения и сравнение его с допускаемым
GH = 10800 ґ zEcosф / a =  (T1 ґ (uф + 1)3 / b ґ uф) ґ KH ґ Kh ґ KHV  [GH]МПа
zE =  1 / E
E = (1.88 – 3.2 ґ (1 / z1ф + 1 / z2ф)) ґ cosф
E = (1.88 – 3.2 ґ (1 / 18 + 1 / 102)) ґ 0.96 = 1.6039
zE =  1 / 1.6039 = 0.7895
Kh = 1.09
GH =
10800 ґ
0.7865 ґ
0.96 / 125 ґ
(19.3 / 31) ґ
(6.63 / 5.6) ґ
1.09 ґ
1.03 ґ1.1
=
= 65.484 ґ
6.283 = 411.43 
GH = (411.43 – 407.125) / 407.125 ґ 100% = 1.05% < 5%
2.3. Проверочный расчет зубчатой цилиндрической передачи на выносливость при изгибе
2.3.1. Определение допускаемых напряжений на выносливость при изгибе для материала шестерни [GF]1 и колеса [GF]2
[GF]1,2 = (GF01,2 ґ KF) / SF1,2
GF0 – предел выносливости при изгибе
GF0 = 1.8HB
GF01 = 1.8 ґ 205 = 368
GF02 = 1.8 ґ 175 = 315
SF – коэффициент безопасности
SF = 1.75
KF – коэффициент долговечности
KF = 6 NF0 / NKFE
KF0 – базовое число циклов
NF0 = 4 ґ 106
NFE – эквивалентное число циклов
NFE = 60nLh ґ (Ti / Tmax)6 ґ Lhi / Lh
NFE1 = 60 ґ 1435 ґ 10000 ґ (0.1 ґ 16 +0.9 ґ 0.86) = 289.24 ґ 106
NFE2 = 60 ґ 256.25 ґ 10000 ґ (0.1 ґ 16 +0.9 ґ 0.86) = 55.68 ґ 106
KFL1 = 6 4 ґ 106 / 289.24 ґ 106 = 0.49
KFL2 = 6 4 ґ 106 / 55.68 ґ 106 = 0.645
Принимаю KFL1 = KFL2 = 1
[GF]1 = 369 / 1.75 = 210.86
[GF]2 = 315 / 1.75 = 180
2.3.2. Определение эквивалентных чисел зубьев шестерни и колеса
zv1 = z1 / cos3 = 20
zv2 = z2 / cos3 = 113
2.3.3. Определение коэффициентов формы зубьев шестерни и колеса
YF1 = 4.08
YF2 = 3.6
2.3.4. Сравнение относительной прочности зубьев
[GF] / YF
[GF]1 / YF1
[GF]1 / YF1 = 210.86 / 4.20 = 51.47
[GF]2 / YF2
[GF]2 / YF2 = 180 / 3.6 = 50
Менее прочны зубья колеса
2.3.6. Определение напряжения изгиба и сравнение его с допускаемым
GF2 = 2000 ґ T2 ґ KF ґ KF ґ KFV ґ YF2 ґ Y / b ґ m ґd2  [GF]МПа
E = b ґ sinф /  ґ mn
E = 31.25 ґ 0.27 / 3.14 ґ 2 = 1.3436
KF – коэффициент, учитывающий распределение нагрузки между зубьями
KF = (4 + (E – 1) ґ (n` – 5)) / 4E
E = 1.60 ґ 39
n` = 8
KF = (4 + (1.6039 – 1) ґ (8 – 5) / 4 ґ 1.6039 = 0.9059
KF – коэффициент распределения нагрузки по ширине зубчатого венца
KF = 1,05
KFv – коэффициент, учитывающий динамическую нагрузку в зацеплении
KFv = 1.1
Y – коэффициент, учитывающий наклон зуба
Y = 1 –  / 140
Y = 1 – 15.2 / 140 = 0.89
GF2 = 2000 ґ 104.94 ґ 0.9059 ґ 1.05 ґ 1.1 ґ 3.6 ґ 0.89 / 31 ґ 2 ґ 212.5 = 153,40
GF2 = 153.40  [GF] = 180
3. Расчет валов
3.1. Усилие на муфте
3.1.1. МУВП
FN = (0.2…0.3) tм
Ftм – полезная окружная сила на муфте
Ftм = 2000 T1p / D1
T1p = KgT1
Kg = 1.5
T1p = 1.5 ґ 19.3 = 28.95Нм
D1 – расчетный диаметр
D1 = 84мм
Ftм = 2000 ґ 28.95 / 84 = 689.28H
Ftм1 = 0.3 ґ 689.29 = 206.79H
3.1.2. Муфта цепная
D2 = 80.9мм
d = 25мм
T2p = T2 ґ Kg
Kg = 1.15
T2p = 1.15 ґ 104.94 = 120.68Hм
Ftм = 2000 ґ 120.68 / 80.9 = 2983.44H
Fм = 0.25 ґ 2983.44 = 745.86H
3.2. Усилия в косозубой цилиндрической передаче
Ft1 = Ft2 = 2000 ґ T1 / d1 = 2000 ґ 19.3 / 37.5 = 1029.33
3.2.2. Радиальная сила
Fr1 = Fr2 = Ft1 ґ tg / cos
 = 20
 = 15.2
Fr1 =1029.33 ґ tg20 / cos15.2 = 1029.33 ґ 0.364 / 0.96 = 390.29H
3.2.3. Осевая сила
Fa = FaI = Fai+1 = Fa ґ 
Fa = 1029.39 ґ tg15.2 = 279.67H
Величины изгибающих моментов равны:
изгибающий момент от осевой силы на шестерню:
Ma1
= Fa1
ґ
d1
/2
Ma1
= 279.67 ґ
37.5 ґ
10-3 /
2 = 5.2438Hм
изгибающий момент от осевой силы на колесо:
Ma2 = Fa1 ґ d2 / 2
Ma2 = 279.67 ґ 212.5 ґ 10-3 / 2 = 29.7149Hм
4. Разработка предварительной компоновки редуктора
l = 2bm
q = bm
bm = 31 + 4 = 35мм
p1 = 1.5bm
p2 = 1.5bk
p1 = 1.5  52.5
a = p1 = 52.5
b = c = bm = 35мм

5. Проектный расчет первого вала редуктора
6. Построение эпюр
6.1. Определение опорных реакций
Вертикальная плоскость
Момент относительно опоры "II"
MвII = Fr1 ґ b – F ґ (d1 / 2) – FrIb ґ (b + c) = 0
FrIв = (FrI ґ b – Fa ґ (dt/2)) / (b + c)
FrIв
= (390.29 ґ
35 – 279.67 ґ
(37.5 / 2)) / (35 + 35) =
= (13660.15 – 5245.81) / 70 =
120.23
Момент относительно опоры "I"
MвI = FrвII ґ (b + c) – Fr1c – F ґ (d1 / 2) = 0
FIIв = (Fr1 ґ c + Fa ґ (d1 / 2)) / (b + c)
FIIв = (390.29 ґ 35 + 279.67 ґ (37.5 / 2)) / 70 = 270.06
Проверка
pв = FrIIв + FrIв – FrI
pв = 270.06 + 120.23 – 390.29 = 0
Горизонтальная плоскость
Момент относительно опоры "II"
MгII = Ft1 ґ b – FгIг ґ (b + c) + Fм ґ a
FrIг = (Ft1 ґ b + Fм1 ґ a) / (b + c)
FrIг = (1029,33 ґ 35 + 206,79 ґ 52,5) / (35 + 35) = (36026,55 + 10856,48) / 70 = 669,76
Момент относительно опоры "I"
MI = Fм ґ (a + b + c) – FrгII ґ (b +c) – Ft1 ґ c
FrIIг = (Ft1 ґ c – Fм1 ґ (a +b +c)) / (b + c)
FrIIг =(1029.33 ґ 35 – 206.79 ґ (35 + 35 + 52.5)) / 70 = 152.78
Проверка:
pг = FrIIг – Ft1 + FrIг + Fм1
pг = 152.78 – 1029.33 + 669.76 + 206.79 = 0
Определяю полные опорные реакции:
Ft1 =  (FrвI)2 + (FrгI)2
Ft1 =  120.232 + 669.762 = 680.4
FtII =  (FrвII)2 + (FrгII)2
FtII = 270.062 + 152.782 = –310.3
6.2. Построение эпюр изгибающих и крутящих моментов
Эпюра изгибающих моментов в вертикальной плоскости:
МвII = 0
М1`в = FrвII ґ b
М1`в = 270.06 ґ 35 = 3452.1 ґ 10-3
М1``в = FrвII ґ b – Fa1 ґ d1 / 2
М1``в = 9452.1 – 5243.8 = 4208.3 ґ 10-3
МвI = 0
Эпюра изгибающих моментов в горизонтальной плоскости:
МгII = Fм1 ґ a = 0
МгII = 206.79 ґ 52.5 = 10856.5 ґ 10-3
М1г = FrгI ґ b
М1г = 669.76 ґ 35 = 23441.6 ґ 10-3
6.3. Определение диаметров валов в опасных сечениях
В сечении "II"
МIIрез =  (МвII)2 + (МгII)2
T = T1 = 19.3
МIIрез =  (10.856)2 = 10.856
Приведенный момент:
МIIпр =  (МвIIрез)2 + 0.45T12
МIIпр =  (10.86)2 + 0.45 ґ 19.32 = 16.89
В сечении "I"
МIрез =  (М''1в)2 + (МгI)2
МIрез =  4.2082 + 5.3472 = 6.804
МIпр =  (МIрез)2 + 0.45T12
МIпр =  6.8042 + 0.45 ґ 19.32 = 14.62
Определяю диаметры валов
Валы из стали 45
В сечении "II"
dII = 10 3 MIIпр / 0.1[Gu]
dII = 10 3 16.89 / 0.1 ґ 75 = 13.11мм
[Gu] = 75МПа
принимаю dII = 25мм
В сечении "I"
dI = 10 3 MIпр / 0.1[Gu]
dII = 10 3 14.62 / 0.1 ґ 75 = 12.49мм
принимаю dI = 30мм
7. Выбор подшипников качения по динамической грузоподъемности для опор валов редуктора
7.1. Выбор подшипников качения для первого вала редуктора
7.1.1. Схема нагружения подшипников
7.1.2. Выбираю тип подшипников
FI = 680.29
FII = 310
Fa = 279.67
Fa / FrI = 0 / 680.4 = 0  ШРО №105
Fa / FrII = 279.67 / 680.4 = 0.9  ШРУ
Наиболее нагруженная опора  "I" опора
Два радиально–упорных подшипника типов 36000, 46000, 66000
7.1.3. Задаюсь конкретным подшипником
ШРУО тип 306205
d = 25мм
D = 52 мм
B = 15 мм
R = 1.5мм
C = 16700H
C0 = 9100H
Fa1 / C0 = 279.67 / 9100 = 0.031
Параметр осевого нагружения
l = 0.34
x = 0.45
y = 1.62
 – угол контакта
 = 12
7.1.4. Определение осевых составляющих реакций от радикальных нагрузок в опорах
S1,2 = l' ґ FrI,II
FrI / C0 = 680.4 / 9100 = 0.075
FrII / C0 = 310.3 / 9100 = 0.34
l'1 = 0.335
l'2 = 0.28
SI = 0.335 ґ 680.4 = 227.93
SII = 0.28 ґ 310.3 = 86.88
7.1.5. Устанавливаю фактические осевые силы FaI и FaII, действующие на опоры "I" и "II"
Fa + SI = 279.67 + 227.93 = 507.6  SII
507.6  86.88
FaI = SI = 227.93
FaII = Fa + SI = 507.6
7.1.6. Определяю эквивалентную нагрузку для каждой опоры
V = 1
Pi = (cVFri + yFai) ґ K ґ Kт
K = 1.1
Kт = 1.4
PI
= (0.45 ґ
1 ґ
680.4 + 1.62 ґ
227.93) ґ
1.1 ґ
1.4 =
= (306.18 + 369.25) ґ
1.54 = 1040.16
PII = 0.45 ґ 1 ґ 310.3 ґ 1.62 ґ 507.6 ґ 1.54 = 1481.4
7.1.7. Определяем эквивалентную приведенную нагрузку, действующую на наиболее нагруженную опору
PIIпр = Kпр ґ PII
Kпр = 3 11 + 22
Kпр = 3 1 ґ 0.1 + 0.83 ґ 0.9 = 3 0.5608 = 0.825
PIIпр = 0.825 ґ 1481.4 = 1222.16
7.1.8. По заданной номинальной долговечности в [час] Lh, определяю номинальную долговечность в миллионах оборотов
L = 60 ґ n ґ Lh / 106
L = 60 ґ 1435 ґ 100000 / 106 = 861
7.1.9. Определяю расчетную динамику подшипника
c = PIIпр 3.3 z
c = 1222.16 3.3 861 = 9473.77
Основные характеристики принятого подшипника:
Подшипник № 36205
d = 25мм
D = 52мм
C = 16700H
 = 15мм
r = 1.5мм
C0 = 9100H
n = 13000 об/мин
7.2. Проектный расчет второго вала редуктора и подбор подшипников
d2 = c 3 N2 / n2
c = d1 / (3 N1 / n1)
c = 30 / (3 2.9 / 1435) = 238.095
d2 = 238.095 3 2.813 / 256.25 = 52.85
Принимаю: dII = 45
Подшипник № 36209
d = 45мм
D = 85мм
 = 19мм
r = 2мм
c = 41200H
C0 = 25100H
n = 9000 об/мин
 = 12
8. Уточнённый расчёт на усталостную прочность одного из валов редуктора
Для первого вала редуктора:
Запас усталостной прочности
n = nG ґ n /  n2G + n2 > [n] = 1.5
nG – коэффициент запаса усталостной прочности только по изгибу
nG = G–1 / ((KG / EmEn) ґ Ga + bGm)
n – коэффициент запаса усталостной прочности только по кручению
n =  / ((K / EmEn) ґ a +  ґ m)
G-1; -1 – предел усталостной прочности при изгибе и кручении
G-1 = (0.4…0.43) ґ Gb
Gb  500МПа
G-1 = 0.42 ґ 850 = 357
-1 = 0.53G-1
-1 = 0.53 ґ 357 = 189.2
Gm и m – постоянные составляющие
Ga = Gu = Mрез / 0.1d3
a = m =  / 2 = (T / 2) / (0.2d3)
G;  – коэффициенты, учитывающие влияние постоянной составляющей цикла напряжений на усталостную прочность
G = 0.05
 = 0
Em – масштабный фактор, определяемый в зависимости от диаметра вала и наличия концентраторов напряжения
En – фактор качества поверхности, определяемый в зависимости от способа обработки вала и предела прочности стали на растяжение
KG и K – эффективные коэффициенты концентрации напряжений, которые выбираются в зависимости от фактора концентрации напряжений и предела прочности стали при растяжении
8.1. Определение запаса усталостной прочности в сечении вала "А–А"
d = 20мм
Мрез = 0
n = n = -1 / ((K / (Em ґ En)) ґ a +  ґ m)
-1 = 189.2
a = m = (19.5 / 2) / (0.2 ґ 203) = 6.09
G = 0.05
 = 0
KV = 1.85
K = 1.4
Em = 0.95
En = 1.9
n = 1.89 / (1.4 ґ 6.09 / 0.9 ґ 0.95) = 18.98 > [n] = 1.5
8.2. Запас усталостной прочности в сечении вала "Б–Б"
D = 25мм
T1 = 19.3
Mрез = 10,86
-1 = 189.2МПа
G-1 = 357
KV = 1.85
K = 1.4
Em = 0.93
En = 0.9
Ga = Mрез ґ103 / 0.1d3
Ga = 10.86 ґ 103 / 0.1 ґ 253 = 10860 / 1562.5 = 6.95
a = Ѕ T1 / 0.2d3
a = 0.5 ґ 19.3 ґ 103 / 0.2 ґ 253 = 9650 / 3125 = 3.1
nG = (G–1) / ((Kg / Em ґ En) ґ Ga + bVm)
nG = 357 / ((1.85 ґ 6.95) / (0.9 ґ 0.93)) = 357 / 15.36 = 23.24
Vm = 0
n = –1 / ((K ґ a) / (Em ґ En)
n = 189.2 / ((1.4 ґ 3.1) / (0.93 ґ 0.9)) = 189.2 / 5.19 = 36.45
n = nG ґ n /  n2G + n2
n = 23.24 ґ
36.45 / 
23.242 + 36.452 = 847.1 / 
540.1 + 1328.6 =
= 847.1 / 
1868.7 = 847.1 / 43.23 = 196.6 > [n]
= 1.5
8.3. Определение запаса усталостной прочности в сечении вала "B–B"
d = 30мм
T = 19.3
Mрез = 6,8
-1 = 189.2МПа
KV = 1.85
K = 1.4
Em = 0.91
En = 0.9
Ga = 6.8 ґ 103 / 0.1 ґ 303 = 2.5
a = 9650 / 5400 = 1.79
nG = 357 / ((1.85 ґ 2.5) / (0.9 ґ 0.91)) = 63.22
n = 189.2 / ((1.4 ґ 1.79) / (0.9 ґ 0.91)) = 61.83
n = 63.22 ґ
61.83 / 
63.222 + 61.832 = 3908.9 / 
3996.8 + 3822.9 =
= 3908.9 / 
7819.7 = 3908.9 / 88.42 = 44.2 > [n]
= 1.5
9. Подбор и проверочный расчет шпонок
9.1. Для участка первого вала под муфту
l = lст – (1…5мм)
lст = 40мм
l = 40 ґ 4 = 36мм
d = 20мм
b = 6мм
h = 6мм
T = 19.5
Gсм = 4T ґ 103 / dh(l – b)  [Gсм] = 150МПа
Gсм = 4 ґ 19.5 ґ 103 / (20 ґ 6 ґ (35 – 6)) = 78000 / 3600 = 21.67МПа
21.67МПа  150МПа
9.2. Для участка первого вала под шестерню
lст = 35мм
l = 32мм
d = 30мм
b = 8мм
h = 7мм
T = 19.5
Gсм = 4 ґ 19.3 ґ 103 / (30 ґ 7 ґ (32 – 8)) = 15.3МПа
9.3. Для участка второго вала под колесо
lст = 31мм
l = 28мм
d = 50мм
b = 14мм
h = 9мм
T = 104.94
Gсм = 4 ґ 104.94 ґ 103 / (50 ґ 9 ґ (28 – 14)) = 66.63МПа
9.4. Для участка второго вала под цепную муфту
lст = 81мм
l = 80мм
d = 40мм
b = 12мм
h = 8мм
T = 104.35
Gсм = 4 ґ 104.35 ґ 103 / (40 ґ 8 ґ (80 – 12)) = 19.18МПа
10. Проектирование картерной системы смазки
10.1. Выбор масла
Масло индустриальное 30
ГОСТ 1707–51
Окружная скорость:
 = 2.82м/с
10.2. Объем масляной ванны
V = (0.35…0.55)N
N = 2.8
V = 0.45 ґ 2.8 = 1.26л
10.3. Минимально необходимый уровень масла
hмин = V / L ґ B
L – длина редуктора
L = 2a + 20мм
L
= 2 ґ
125 + 20 = 270мм
B – ширина редуктора
B = 35 + 20 = 55мм
hмин = 1.26 ґ 103 / 27 ґ 5.5 = 8.5см3
10.4. Назначение глубины погружения зубчатых колес
hк = d2 / 6
hк = 212.5 / 6 = 35.42мм
10.5. Уровень масла
h = hmin = 85мм
10.6. Смазка подшипников качения консистентными смазками
Солидол УС–2
ГОСТ 1033–79
Литература:
- Выполнение курсового проекта по предмету Детали машин (методические рекомендации., МГАПИ 
- Методические указания по выбору параметров привода с редуктором на ЭЦВМ. Мартынов Н.Ф.,Лейбенко В.Г..М.,ВЗМИ.1984. 
- Методические указания по расчету передач в курсовом проекте по деталям машин. Живов Л.И.,М.,ВЗМИ.1983. 
- Гузенков П.Г. Детали машин.М.,Высшая школа.1982. 
- Иванов М.Н. Детали машин. М.,Высшая школа.1984. 
- Приводы машин. Справочник. Под общ.ред. Длоугого В.В.Л., Машиностроение.1982. 
- Зубчатые передачи. Справочник. Под общ.ред. Гинзбурга Е.Г. Л..машиностроение.1980. 
- Курсовое проектирование деталей машин. Под общ.ред.Кудрявцева В.Н. Л..Машиностроение.1983. 
ГОСКОМВУЗ
РФ
МОСКОВСКАЯ
ГОСУДАРСТВЕННАЯ
АКАДЕМИЯ
ПРИБОРОСТРОЕНИЯ И ИНФОРМАТИКИ
КАФЕДРА «Прикладная механика»
Допустить к защите
«____» ______________ 2000г.
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовому проекту
Тема проекта: Спроектировать привод конвейера по заданной схеме и характеристикам
Проект выполнил студент: Бакачёв А.И
____________
подпись
Шифр: 96009 Группа: МТ-8
Специальность: 1201
Курсовой проект защищен с оценкой ______________________________________
Руководитель проекта ___________________________________________________
подпись
Москва 2000 г.
ГОСКОМВУЗ РФ
МОСКОВСКАЯ ГОСУДАРСТВЕНАЯ АКАДЕМИЯ
ПРИБОРОСТРОЕНИЯ И ИНФОРМАТИКИ
КАФЕДРА «Прикладная механика»
ЗАДАНИЕ НА КУРСОВОЙ ПРОЕКТ
Студент: Бакачёв А.И. Шифр: 96009 Группа: МТ-8
1. Тема: Спроектировать привод конвейера по заданной схеме и характеристикам
2. Срок сдачи студентом курсового проекта:
« »________ 2000 г.
3. Исходные данные для проектирования:
Привод выполнен по схеме: эл. двигатель + муфта упругая втулочно-пальцевая + редуктор + муфта цепная
Мощность на выходном валу привода Nвых = 2,8кВт
Номинальная частота вращения вала эл. двигателя nсинхр = 1500об/мин
Расчетная долговечность Lh = 10000ч
График нагрузки - постоянный
4. Содержание пояснительной записки:
4.1 Задание на курсовой проект.
4.2 Оглавление с указанием страницы, которыми начинается новый раздел.
4.3 Назначение и область применения разрабатываемого привода. 4.4. Техническая характеристика привода.
4.5 Описание работы и конструкции привода и его составных частей.
4.6 Расчеты, подтверждающие работоспособность привода.
4.7 Уровень стандартизации и унификации.
4.8 Перечень использованной литературы.
5. Перечень графического материала
1 лист ф. А1 – редуктор
2 лист ф. А1 – привод
Рабочие чертежи деталей ( 1... 1,5 листа ф. А1)
Руководитель проекта _______________
Задание принято к исполнению «___»__________ 2000 г.
Подпись студента _______________
Похожие работы
- 
							Расчетно-пояснительная записка по расчету винтового конвейера
							Данные для расчета. Производительность т/ч. Длина трассы транспортирования Высота транспортирования Угол наклона транспортирующей машины (ТМ)  
- 
							Расчет сборочной машины для сборки детали Пластина контактная
							Саратовский государственный технический университет Кафедра СИН Курсовая работа по курсу: Основы конструирования Выполнил студент группы РТС-51 
- 
							Разработка гидропривода технологического оборудования
							Донской Государственный Технический Университет кафедра “Гидравлика, ГПА и ТП” Зав. кафедрой, доц. к.т.н. ___________В.С. Сидоренко 
- 
							Проектирование червячного редуктора
							Технические данные. Спроектировать машинный агрегат для привода. Расчетные данные: Р = 5 кВт Т = 10000 Н*м = 4 мин. = 1000 мм h = 12 = 1000 м Введение. Во всех отраслях народного хозяйства производственные процессы осуществляются машинами или аппаратами с машинными средствами механизации. Поэтому уровень народного хозяйства в большей степени определяется уровнем машиностроения. 
- 
							Проектирование привода ленточного транспортёра
							dбmin тау к dae2 б da2 т дельта к da2 т Delta2 Delta2 ΔС Tк1 б 449.6 50.0 58.0 160.5 236.08 30.76 338.29 54.17 236.08 236.08 1.354 77.55 4.33E+06 37.79 
- 
							Проектирование привода к специальной установке
							Московский Государственный Авиационный Технологический университет им. К.Э.Циолковского Кафедра “Детали машин и ТММ” Расчетно - Пояснительная 
- 
							Проектирование вертикально фрезерного станка
							Исходные данные Тип станка - вертикально фрезерный. Параметры: Приведенный диаметр заготовки Максимальная длина заготовки Максимальное количество оборотов 
- 
							Пояснительная записка к курсовому проекту по ТММ Расчет редуктора
							Пояснительная записка к курсовому проекту «Детали машин» Содержание: Введение (характеристика, назначение). Выбор эл. двигателя и кинематический расчет. 
- 
							Кинематический и силовой расчет привода
							Угловая скорость приводного барабана: Где V - скорость ленты транспортёра; D-диаметр приводного барабана. Передаточное число всей передачи -число оборотов двигателя и выходного барабана, 
- 
							Борьба за живучесть судна
							Содержание 1. Дипломное задание……...……….……………………..…. 2 2. Содержание……………...…………….…….…………….... 3 3. Обязанности экипажа по борьбе за живучесть судна….… 5