Referat.me

Название: Критерій х кв Пірсона

Вид работы: реферат

Рубрика: Астрономия

Размер файла: 43.19 Kb

Скачать файл: referat.me-3240.docx

Краткое описание работы: Реферат на тему: Критерій х Пірсона” Критерій незалежності хі-квадрат Пірсона призначений для перевірки гіпотези про незалежність двох ознак, що задають рядки і стовпці таблиці спряженості. Статистика цього критерію

Критерій х кв Пірсона

Реферат

на тему:

“Критерій х2 Пірсона”



Критерій незалежності хі-квадрат Пірсона призначений для перевірки гіпотези про незалежність двох ознак, що задають рядки і стовпці таблиці спряженості. Статистика цього критерію

де сума береться по всіх клітках таблиці спряженості. Вона збігається зі статистикою критерия согласия хи-квадрат*, специфіка складається лише в способі обчислення очікуваних зустрічальностей: eij =ri cj /N, де ri – сума зустрічальностей у i-й рядку, cj – сума зустрічальностей у j-м стовпці.

Критерій згоди хі-квадрат використовується для перевірки гіпотези про збіг емпіричного і теоретичного розподілів дискретних випадкових величин. Критерій ґрунтується на порівнянні спостережених і очікуваних (теоретичних) встречаемостей. Статистика критерия дорівнює сумі квадратів різниць між спостереженими й очікуваними зустрічальностями, ділених на очікувані зустрічальності , де oi – спостережена зустрічальність i-й градації, а ei – її очікувана зустрічальність. Зверніть увагу: значення статистики залежить від обсягу вибірки.

Розглянемо одну з основних задач математичної статистики -задачу про перевірку правдоподібності гіпотез. Перед дослідником завжди поставав питання: як установити, чи суперечать досвідчені дані гіпотезі про те, що СВ_Х розподілена за деяким законом. Для відповіді на це питання користаються так називаними критеріями згоди. Одним з таких критеріїв є критерій c 2 - Пірсона. У чому його суть? Пірсон запропонував розрахувати теоретичні частоти реалізації СВ_Х, що підкоряється гіпотезі, що перевіряється, про закон розподілу , і порівняти їх з емпіричними за визначеним критерієм. Якщо критерій задовольняється, то гіпотеза про передбачуваний закон розподілу СВ_Х не відкидається, якщо критерій не задовольняється, те гіпотеза про передбачуваний закон розподілу СВ_Х відкидається і дослідник повинний висувати нову гіпотезу про закон розподілу СВ_Х (тобто переглянути свої погляди на природу досліджуваного явища).
Припустимо, що зроблено n незалежних досвідів, у кожнім з який СВ_Х прийняла визначене значення. Ці значення занесені в таблицю:

X x1 x2 ... xk-1 xk
n n1 n2 ... nk-1 nk
P* p1 * p2 * ... pk-1 * pk *

Тут – частота події. Ми висуваємо гіпотезу Н0 , що складається в тім, що СВ_Х має розподіл

X x1 x2 ... xk-1 xk
n n1 n2 ... nk-1 nk
P* p1 * p2 * ... pk-1 * pk *

Щоб перевірити правдоподібність цієї гіпотези, треба вибрати якусь міру розбіжності статистичного розподілу з гіпотетичним. Як міру розбіжності береться сума квадратів відхилення статистичних імовірностей від гіпотетичних, узятих з деякими "вагами" сj : Коефіцієнти сj уводяться тому, що відхилення, що відносяться до різних значень pi , не можна вважати рівноправними: те саме по абсолютній величині відхилення може бути малозначним, якщо імовірність pj велика, і дуже помітним, якщо вона мала. Пірсон довів, що якщо прийняти , те при великому числі досвідів n закон розподілу величини R має дуже прості властивості: він практично не залежить від закону розподілу СВ_Х и мало залежить від числа досвідів n, а залежить тільки від числа значень випадкової величини (СВ_Х) k і при збільшенні n наближається до розподілу c 2 . При такому виборі коефіцієнтів cj міра розбіжності R звичайно позначається c 2 набл : чи з обліком того, що , одержимо .

Величина R підкоряється розподілу c 2 і залежить від параметра r, називаного "числом ступенів волі". При даному критерії число ступенів волі дорівнює числу значень СВ_Х k мінус число незалежних умов ("зв'язків"), накладених на частоти р* .

Проста лінійна кореляція (Пірсона r). Кореляція Пірсона (далі називана просто кореляцією ) припускає, що дві розглянуті перемінні обмірювані, принаймні, у интервальной шкале (см. Элементарные понятия статистики ). Вона визначає ступінь, з яким значення двох перемінних "пропорційні" один одному. Важливо, що значення коефіцієнта кореляції не залежить від масштабу виміру. Наприклад, кореляція між ростом і вагою буде однієї і тієї ж, незалежно від того, проводилися виміри в дюймах і чи фунтах у сантиметрах і кілограмах . Пропорційність означає просто лінійну залежність . Кореляція висока, якщо на графіку залежність "можна представити" прямою лінією (з позитивним чи негативним кутом нахилу).

Проведена пряма називається прямою регресії чи прямою, побудованою методом найменших квадратів . Останній термін зв'язаний з тим, що сума квадратів відстаней (обчислених по осі Y) від крапок, що спостерігаються, до прямої є мінімальної. Помітимо, що використання квадратів відстаней приводить до того, що оцінки параметрів прямої сильно реагують на викиди.

Як інтерпретувати значення кореляцій. Коефіцієнт кореляції Пірсона (r ) являє собою міру лінійної залежності двох перемінних. Якщо звести його в квадрат, то отримане значення коэффициента детерминации r2 ) представляє частку варіації, загальну для двох перемінних (іншими словами, "ступінь" чи залежності зв'язаності двох перемінних). Щоб оцінити залежність між перемінними, потрібно знати як "величину" кореляції, так і її значимість.


Використана література:

1. Вища математика для ВУЗів. – Харків, 2000.

2. Высшая математика. – Одесса, 1992.

Похожие работы

  • Бульові функції

    Реферат на тему: 1. Алгебри бульових виразів і бульових функцій 7.1.1. Основні поняття Множину {0, 1} позначимо літерою B. Множину всіх можливих послідовностей з 0 і 1 – Bn. Такі послідовності за традицією будемо називати наборами або векторами довжини n. Очевидно, Bn містить 2n елементів. Значення 0 і 1 називаються протилежними одне до одного.

  • Програмування масиви та рядки

    Реферат з інформатики Програмування: масиви та рядки. 1. Одновимірні масиви Масив у програмуванні – це тип структури даних, що має складені значення.

  • Кореляційний і регресивний методи аналізу зв язку

    Реферат з вищої математики на тему: Кореляційний і регресивний методи аналізу зв’язку Основне завдання кореляційного і регресійного методів полягає в аналізі статистичних даних для виявлення математичної залежності між досліджуваними ознаками і встановлення за допомогою коефіцієнта кореляції порівняльної оцінки щільності взаємозв’язку.

  • Деколонізація

    1922 – Палестина знаходилась під управлення Великобританії 1943 – отримання незалежності Сирії та Лівану 17 серпня 1945 – незалежність Індонезії 2 вересня 1945 проголошення Демократичної республіки В’єтнам

  • Викорінення шкідливої звички - паління

    Реферат на тему: ВИКОРІНЕННЯ ШКІДЛИВОЇ ЗВИЧКИ - ПАЛІННЯ Результати проведених досліджень показують, що із 958 респондентів-слухачів 42,8% мають шкідливу звичку палити, 18,2% палять інколи і в 39% шкідлива звичка палити відсутня. Під час формуючого експерименту нами проводилась спеціальна робота по викоріненню шкідливих звичок, зокрема паління, при якому ми опирались на положення, розроблені в транстеоретичній моделі зміни поведінки.

  • Економічні права і можливості суспільства Економічна система суспільства

  • Табличний редактор Excel Створення документа

    Реферат з інформатики Табличний редактор Excel: Створення документа. Мета: Уміти підготувати програму-редактор до роботи і створювати найпростіші електронні таблиці.

  • Вивчення психологічних параметрів усвідомлення професійного образу майбутніми практичними психол

    Розвиток демократизації та гуманізації в системі освіти потребує постійного удосконалення процесу становлення спеціаліста. Проблема підготовки практичних психологів набула особливого значення в зв`язку із великим соціальним замовленням на дану спеціальність та різними формами їх підготовки.

  • Використання зведених таблиць Робота із зведеними таблицями використання

    Лабораторна робота № 9 Тема Використання зведених таблиць Мета: Ознайомитися з командою Зведена таблиця. Навчитися застосовувати зведені таблиці для одержання підсумкової інформації.

  • Послідовності

    План Числова послідовність. Означення границі числової послідовності. Основні теореми про границі. Обчислення деяких границь. Монотонні послідовності.