Название: Обоснование методики оценки надмолекулярной организации углей с использованием рентгеноструктурного анализа
Вид работы: статья
Рубрика: Биология и химия
Размер файла: 15.61 Kb
Скачать файл: referat.me-21662.docx
Краткое описание работы: С целью рационального использования углей необходимо определить их структуру, так как именно она определяет их свойства и направление наиболее эффективной переработки.
Обоснование методики оценки надмолекулярной организации углей с использованием рентгеноструктурного анализа
Д.И. Дедовец, В.Н. Шевкопляс, Л.Ф. Бутузова, Донецкий национальный технический университет
С целью рационального использования углей необходимо определить их структуру, так как именно она определяет их свойства и направление наиболее эффективной переработки. Одним из наиболее эффективных методом исследования надмолекулярной организации углей является рентгеноструктурный анализ. Хотя рентгеноструктурный анализ является одним из наиболее старых и хорошо зарекомендовавших себя методов изучения строения углей до сих пор не выработано стандартной методики его использования. Целью данной работы является изучение всех составляющих существующих методик использования РСА и разработка ни их основе новой с обоснованием выбора тех или иных структурных ее элементов, а также последующая отработка полученной методике при анализе углей различной степени метаморфизма.
В основе метода рентгеноструктурного анализа лежит снятие с пробы угля дифрактограммы и дальнейшая ее обработка с целью выяснения внутренней структуры исследуемого образца. Суть обработки заключается в описании полученной экспериментальной функции суммой аналитически выраженных функций. При этом мнения о том, какого вида функции должны быть использованы в разложении экспериментальной, у различных исследователей расходятся. Так при классическом разложении используют тригонометрические функции, а отдельные исследователи предлагают использовать сумму, состоящую из гауссианов. Причем в исследованиях не приводятся обоснования вида функции и длины частичного функционального ряда, используемых в разложении.
Таким образом, видно, что для выделения из дифрактограммы профилей рентгеноструктурных фаз необходимо решить две задачи:
выбор вида функции для описания каждой из рентгеноструктурных фаз;
определить и обосновать количество членов частичного функционального ряда для описания экспериментальной функции.
Поскольку упорядоченную кристаллическую решетку можно рассматривать как набор узких щелей, то для описания данной структуры в качестве функции лучше всего подходит функция, которая описывает дифракцию луча на узкой щели. Дифракцию на частично упорядоченных алифатических фрагментах должен удачно описывать нормальный закон распределения, графиком которого является гауссиан.
Обоснование количества членов частичного функционального ряда, суммой членов которого будет описываться экспериментальная кривая, должно быть комплексным. Во-первых, количество членов такого ряда не может быть меньше количества фаз, которые наверняка содержаться в исследуемом образце угля, поскольку в ином случае рассчитанные параметры структуры не будут соответствовать определенным рентгеноструктурным фазам угля. Во-вторых, длина ряда может быть на один или несколько членов больше количества фаз, из которых состоит исследуемый образец, для того, чтобы учесть таким образом влияние отдельных молекул, которые не входят в упорядоченную структуры, а лишь вносят определенный уровень шума в результирующий сигнал. В-третьих, длина ряда должна быть такой, чтобы сумма его членов описывала экспериментальную кривую с заданной точностью. Наконец, длина функционального ряда должна быть как можно меньшей для облегчения подбора коэффициентов отдельных его членов.
Таким образом, встает вопрос о том, какая функция будет точнее описывать экспериментальную кривую при определенном количестве членов частичного ряда.
Для выбора такой функции было проведено следующее исследование. В качестве функционального ряда для описания экспериментальной кривой были выбраны следующие:
ряд, члены которого описываются законом нормального распределения;
ряд, члены которого, описываются синусоидальным законом дифракции на узкой щели;
смешанный ряд.
Длина частичного ряда варьировалась от одного до трех членов, и в каждом случае проводился подбор параметров членов всех вышеназванных рядов. Далее рассчитывалась сумма квадратов отклонений кривой, которая описывалась каждым из рядов от экспериментальной кривой. Очевидно, что та функция, для которой эта сумма будет меньшей, и быстрее будет изменяться при увеличении количества членов ряда, будет точнее описывать экспериментальную кривую.
Для исследования были взяты пробы углей марок: БУ (Польша), Гl1, ОСl6, Тh8, и Аh8. Результаты сведены в таблицу 1.
Таблица 1 – Результаты расчета суммы квадратов отклонений экспериментальной кривой от расчетной для различных марок углей
Вид профиля | Сумма квадратов отклонений для углей марок: | ||||
БУ (Польша) | Гl1 | ОСl6 | Тh8 | Аh8 | |
Sin | 27464 | 49146 | 28607 | 20894 | 31732 |
2Sin | 15326 | 37294 | 12308 | 9120 | 20090 |
3Sin | 5052 | 13392 | 6779 | 6899 | 13225 |
НР | 10439 | 15507 | 17711 | 20939 | 29009 |
2НР | 6549 | 13392 | 4147 | 4628 | 6516 |
3НР | 565 | 8225 | 1878 | 1051 | 4902 |
1Sin+1НР | 8171 | 11619 | 4675 | 4868 | 8342 |
1Sin+2НР | 1009 | 5306 | 3011 | 3558 | 5178 |
Проанализировав полученные результаты можно увидеть, что с ростом длины частичного ряда точность описания экспериментальной кривой при помощи гауссианов возрастает значительно быстрее, нежели в случае других рядов. На основании этого можно сделать вывод о том, что именно данный вид функционального ряда наилучшим образом подходит для аппроксимации экспериментально полученных рентгеноструктурных кривых. Еще одним объяснением данного факта помимо приведенных выше может быть то, что количество упорядоченных пакетов в образце весьма значительно, но расположены они очень неоднородно, так, что в результате сложения сигналов от них может получиться кривая, удовлетворительно описываемая гауссианом.
Похожие работы
-
Исследование возможности утилизации шамотной пыли в производстве строительной плитки
В производстве огнеупоров одним из факторов отрицательного воздействия на окружающую среду является шамотная пыль. Только одна вращающаяся печь Велико-Анадольского огнеупорного комбината ежегодно "производит" в среднем около 13800 тонн.
-
Разработка технологии получения пористых керамических материалов с использованием отходов переработки бурых углей
Рассмотрена возможность применения полукокса - отхода переработки бурых углей Александрийского месторождения для получения керамических изделий с пористой структурой.
-
Значение анализа газодинамики процесса термолиза промбытотходов при разработке основного агрегата
Для освоения технологии совместной переработки углеродистых промышленных и бытовых отходов необходима разработка ее аппаратного оформления. Оптимизированный комплекс требований к нему—экономическая эффективность, надежность, управляемость.
-
Проблема создания промышленных агрегатов для утилизации твердых углеродистых отходов. Возможности ее решения
Проблема создания промышленных агрегатов для утилизации твердых углеродистых отходов. Возможности ее решения
-
Роль генетического анализа популяций в оптимизации сети особо охраняемых территорий (постановка проблемы)
Работа посвящена проблеме изучения особенностей адаптации и оценки жизнеспособности популяций видов животных, находящихся под угрозой исчезновения или сокращающих свою численность. Предлагаются критерии распознавания уязвимых популяциями с учетом генетических данных.
-
Активный уголь
Активный уголь (активированный уголь), материал с развитой пористой структурой. На 87-97% (по массе) состоит из С, содержит также Н, О и в-ва, введенные в активный уголь при его получении.
-
Содержание общей серы в угольных пластах на шахтах Украины
Повышенное содержание серы в углях снижает их качество, обусловливает при энергетическом использовании значительный рост расхода топлива и опасность загрязнения среды токсичными оксидами серы, а при коксовании — ухудшение качества кокса.
-
Формы серы и азота в органической массе углей
Содержание серы в углях различных бассейнов и месторождений России варьирует в широких пределах – от долей процента до 7-9%. В углях других стран содержание органической серы может достигать 10-12% (угли Раша в Югославии).
-
Рентгенографический фазовый анализ органической массы каменных углей
При исследовании многокомпонентных углеродистых систем особую роль приобретают такие прямые методы ,как, например, рентгенографический количественный фазовый анализ (РКФА).
-
Применение метода множественной регрессии для оценки значений энергии водородных связей
Метод множественных регрессий дает возможность нахождения характеристик различных дефицитных или отсутствующих свойств. Представлена возможность использования ММР для оценки энергий водородных связей в различных растворителях.