Название: Индуктивно-связанная плазма
Вид работы: контрольная работа
Рубрика: Химия
Размер файла: 87.95 Kb
Скачать файл: referat.me-368278.docx
Краткое описание работы: Атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой как простой и точный метод качественного и количественного анализа. Возбуждение и ионизация с последующим переходом в стабильное состояние. Интенсивность испускания волны данной длины.
Индуктивно-связанная плазма
Федеральное агентство по образованию РФ
Государственное образовательное учреждение высшего профессионального образования
Дальневосточный федеральный университет
Химический факультет
Кафедра аналитической химии и химической экспертизы
Тема:
«Индуктивно-связанная плазма»
Выполнил:
Студент 042гр
Остапенко Дмитрий Сергеевич
Руководитель:
К.х.н. доцент Черняев А.П.
Владивосток, 2010г.
Оглавление
Введение
Атомизация пробы
Возможности метода
Устройство оптической системы
Пробоподготовка и анализ проб
Литература
Введение
Атомно-эмиссионная спектроскопия с индуктивно связанной плазмой это весьма популятный, простой и точный метод анализа. Суть его в том, что при возбуждении и ионизации с последующим переходом в стабильное состояние каждый элемент Периодической Таблицы испускает квант света с определенной длиной волны. Соответственно, определяя длину волны, можно провести качественный анализ, а определяя интенсивность испускания волны данной длины – количественный. Отсюда еще одно важное достоинство атомно-эмисионной спектроскопии – оба этих анализа выполняются одновременно.
Возможности метода
Метод ICP AES предназначен для определения преимущественно металлов и металлоидов. Выделяется своей экспрессивностью, удобством и простотой использования. Отлично подходит для анализа воды на металлы в.т.ч. и тяжелые. Также можно успешно анализировать различные геологические породы, биологические объекты. Достаточно хорошо получаются анализы сплавов, хотя тут могут возникнуть трудности, связанные с наличием и процентным содержанием некоторых металлов, но они обычно устраняются пробоподготовкой и методикой проведения анализа.
Атомизация пробы
Современными источниками атомизации и возбуждения служат индуктивно-связанная плазма, плазма постоянного тока, а также микроволновая плазма с емкостной или индуктивной связью.
Чаще всего применяют индуктивно-связанную плазму. Основными узлами данного прибора являются: система подачи пробы, распылитель, узел атомизации пробы (кварцевая горелка с плазмой), оптическая камера, и собственно детектор.
Несколько более подробно остановимся на узле атомизации.
Устройство плазменной горелки:
Плазменная горелка состоит из трех концентрических кварцевых трубок, непрерывно продуваемых аргоном. Верхняя часть горелки помещена внутрь катушки индуктивности высокочастотного генератора (обычно 27,12 или 40,68 МГц). Высокочастотная аргоновая плазма инициируется с помощью искрового разряда. При этом аргон частично ионизируется, в нем возникают свободные носители заряда. Затем в электропроводящем газе инициируется высокочастотный ток, вызывающий дальнейшую лавинообразную ионизацию газа. Ввиду малого сопротивления плазмы она быстро нагревается до 6000-10000 К без прямого контакта с электродами. В центральный канал горелки в виде аэрозоля поступает раствор пробы. При этом стабильность плазмы не нарушается. В плазме происходит высушивание пробы, диссоциация на атомы, ионизация и термическое возбуждение образующихся атомов и ионов.
Ввиду относительно долгого пребывания пробы в плазме и высоких температурах, условия возбуждения близки к оптимальным. Химические матричные эффекты в ICP обычно довольно низки. По этим причинам пределы обнаружения весьма малы.
Дополнительным достоинством метода является возможность плавно регулировать условия атомизации и возбуждения. Поэтому при анализе методом ICP можно подобрать «компромиссные» условия, обеспечивающие одновременное определение множества элементов. Таким образом, ICP-АЭС – типичный многоэлементный метод анализа. Диапазон линейности градуировочного графика достигает пяти-шести порядков (на практике обычно используют 3-4 порядка). Воспроизводимость тоже весьма высока.
Недостатком метода является очень большой расход аргона. Он достигает 10-30л/мин для плазмообразующего газа ( в зависимости от типа горелки и марки спекрометра) и 1-2л/мин для газа-носителя. Также требуется аргон чистотой не менее 99,99%.
Устройство оптической системы
В принципе сама суть того, как обрабатывается пучок света, несложна. Через входную щель он поступает в оптическую камеру, где проходит 1 или несколько фокусирующих зеркал, попадает на монохроматор, далее преобразованный пучок света вновь проходит через фокусирующие линзы и попадает на детектор.
Особого внимания заслуживает монохроматор. В современных приборах в основном используются дифракционные решетки и решетки Эшелле. Свет, попадая на монохроматор, разлагается на монохроматические пучки, которые далее проходя через специальную систему линз попадают на детектор. В более ранних версиях ICP применялись системы со сканирующим монохроматором, определение элементов происходило последовательно, с накоплением сигнала. Рабочий диапазон 220-800нм. При вакуумируемой оптической камере или камере с атмосферой азота (во избежание поглощения УФ части спектра воздухом) – 170-800нм.
Пробоподготовка и анализ проб
Все пробы, анализируемые на ICP должны быть переведены в раствор. Для этого навеску пробы массой 0,1-0,5г (в зависимости от природы пробы, целевых элементов и их предполагаемого содержания навеска может различаться) разлагают азотной кислотой при нагревании или в микроволновой печи. Получившийся раствор при необходимости фильтруется, чтобы удалить взвешенные частицы, наличие которых негативно скажется как на качестве анализа, так и на состоянии механизмов и деталей прибора. После описанных процедур проба разбавляется, чтобы снизить концентрацию солей и оставшейся кислоты. Первое необходимо для того, чтобы не было зашкаливания относительно градуировочного графика, а также для того, чтобы избежать перекрывания спектров излучения элементов. Второе – для того чтобы не так быстро разрушать систему подачи пробы и горелку, так как азотная кислота это достаточно агрессивная среда. Чаще всего рекомендуется анализировать растворы с концентрацией HNO3 10-2 М и ниже. Также для разложения некоторых проб может использоваться соляная или фтороводородная кислота. Однако в случае использования HF необходима замена некоторых частей и узлов системы подачи пробы на специальные, устойчивые к действию фтороводородной кислоты.
Анализ одной пробы обычно занимает немногим более минуты, после чего аналитик получает спектры всех обнаруженных элементов. Расход – 5-6мл пробы на один анализ.
Литература
М.Томпсон, Д.Н.Уолш – Руководство по спектрометрическому анализу с индуктивно-связанной плазмой
Ю.А.Золотов – Основы аналитической химии (2т.)
М.Отто – Современный методы аналитической химии (1т.)
Похожие работы
-
Методы атомно-эмиссионного спектрального анализа
Цель практического эмиссионного спектрального анализа, его сущность, точность и применение. Особенности стилоскопического анализа, основные характеристики спекрографа. Метод трех стандартных образцов, постоянного градуировочного графика и добавок.
-
Спектральные методы анализа
Методы, основанные на определении химического состава и строения веществ по их спектру. Методы эмиссии, абсорбции, рассеяния и преломления. Способы воздействия на вещество для получения его спектра. Спектры оптического диапазона. Возбуждение атома.
-
Количественный эмиссионный спектральный анализ, его аппаратура. Пламенная фотометрия
Понятие и виды эмиссионного спектрального анализа, который основан на зависимости между концентрацией элемента и интенсивностью его спектральных линий. Формула Ломакина. Метод трех эталонов, постоянного графика, визуальные методы. Стилоскопический анализ.
-
Атомно-эмиссионный спектральный анализ
Основы атомно-эмиссионного спектрального анализа, его сущность и область применения. Пламя, искра и высокочастотная индуктивно-связанная плазма как источники возбуждения спектра. Суть спектрографического, спектрометрического и визуального анализа.
-
Абсорбционные оптические методы
Методы анализа, основанные на поглощении электромагнитного излучения анализируемыми веществами. Атомно-абсорбционный анализ. Молекулярно-абсорбционный анализ. Схема фотометрических исследований. Метод стандартных серий и колориметрического титрования.
-
Методы количественного обнаружения в образцах экологически опасных радионуклидов
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МАРИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ Методы количественного обнаружения присутствия в образцах экологически опасных радионуклидов
-
Атомно-эмиссионный спектральный анализ
Теория атомно-эмиссионного спектрального анализа. Основные типы источников атомизации, описание процессов, происходящих в пламени. Принципиальная схема атомно-эмиссионного фотометра. Спектрографическая, спектрометрическая и виртуальная оценка спектра.
-
Методы контроля и анализа веществ (химические методы)
Качественная реакция на отделение кобальта. Определение нормальности раствора; концентрации и количество вещества, выделяемого на электроде. Условия съемки полярограмм в вольтамперометрии. Сущность атомно-эмисссионного оптического спектрального анализа.
-
Физико-химические методы анализа, их классификация и основные приёмы
Использование в физико-химических методах анализа зависимости физических свойств веществ от их химического состава. Инструментальные методы анализа (физические) с использование приборов. Химический (классический) анализ (титриметрия и гравиметрия).
-
Атомно-абсорбционный анализ
Химическое влияние железа и других тяжелых металлов на человека. Гравиметрический и титриметрический методы, потенциометрия, вольтамперометрия, кулонометрия, электрогравиметрия, атомно-эмиссионная спектроскопия, фотометрический и люминесцентный анализы.