Название: Реакции полимеризации
Вид работы: реферат
Рубрика: Химия
Размер файла: 164.25 Kb
Скачать файл: referat.me-370115.docx
Краткое описание работы: Образование высокомолекулярного соединения из простых молекул-мономеров происходит в ходе реакций полимеризации и поликонденсации. Мономерами в процессе полимеризации являются олефины, диены, алкены, альдегиды, циклические кислород- и азотсодержащие насыщенные гетероциклы, циклические карбонаты и лактамы.
Реакции полимеризации
Образование высокомолекулярного соединения из простых молекул-мономеров происходит в ходе реакций полимеризации и поликонденсации. Мономерами в процессе полимеризации являются олефины, диены, алкены, альдегиды, циклические кислород- и азотсодержащие насыщенные гетероциклы, циклические карбонаты и лактамы. Двухосновные спирты, кислоты, диамины, диизоцианаты, фосген и дифенолы, R2Si(OH)2 являются исходными реагентами в реакции поликонденсации (в различных сочетаниях). Процесс полимеризации является цепным процессом с растущим активным центром, участвующим в стадиях роста кинетической и молекулярной цепей. Процесс поликонденсации – ступенчатый процесс (отсутствует кинетическая цепь), в котором образующиеся продукты взаимодействуют друг с другом или с исходными реагентами. Процессы полимеризации, в зависимости от природы активного центра растущей цепи, бывают радикальными, анионными, катионными и координационными (каталитическими).
Радикальная полимеризация
Процесс включает участие свободных радикалов в стадиях:
а) инициирования;
б) роста цепи;
в) обрыва молекулярной цепи (передача кинетической цепи на мономер);
г) обрыва кинетической цепи.
Скорость роста цепи из молекул мономера М
(1)
где n – концентрация радикалов в системе, определяемая уравнением (2) (в квазистационарных условиях, длинных цепях, при квадратичном обрыве цепей)
(2)
(3)
При наличии двух типов квадратичного обрыва – диспропорционированием (4) и рекомбинацией (сочетанием) радикалов (5)
(4)
(5)
полимерный продукт реакции образуется только в реакциях обрыва молекулярной цепи и в реакции передачи цепи на мономер. В случае реакции (4) из двух растущих радикалов образуется 2 молекулы продукта (Р1). Тогда
(6)
(7)
В случае реакции (5)
(8)
(9)
Отсюда
(10)
Скорость образования продукта равна половине скорости обрыва (из двух растущих цепей образуется одна молекула полимера).
Обозначим величину степени полимеризации . Степень полимеризации – отношение числа молекул М, вошедших в полимерные молекулы, к числу полимерных молекул, т.е. скорости роста к скорости образования полимерных молекул
, (11)
где km – константа скорости передачи цепи на мономер
(12)
Из (11) с учетом (2) получим
, (13)
где l = kод/ko; ko = kод + kос.
Различают среднемассовую и среднечисленную
степень полимеризации.
, (14)
где Np – число полимерных молекул со степенью полимеризации p, т.е. числом мономерных звеньев p; S pNp = N0 – число молекул мономера во всех полимерных молекулах.
(15)
Тогда среднечисленная молекулярная масса и среднемассовая (средневзвешенная) молекулярная масса
и
(m1 – молекулярная масса мономера).
В рамках другого подхода
и
, (16)
где ni – числовая доля макромолекул с массой Mi, wi – массовая доля макромолекул с массой Mi.
В случае преимущественного обрыва сочетанием , при обрыве диспропорционированием или передачей цепи
. В случае монодисперсного полимера
.
Рассмотрим особенности процесса радикальной сополимеризации. В случае сополимеризации молекул А и В с образованием радикалов, центрированных на молекулах А или В растущей цепи, должны иметь место 4 стадии роста цепи:
При равенстве kAB[A·][B] = kBA[B·][A] получим
, (17)
где и
– относительные константы скорости сополимеризации. Возможные варианты соотношений r1 и r2:
1) , т.е.
.
Такой полимер называется статистическим. Количество звеньев А и В в макромолекуле пропорционально их исходным концентрациям
2) и
.
и
. Каждый активный центр реагирует с “чужим” мономером. Состав полимера АВАВАВ~.
3) и
. Получаем смесь гомополимеров.
4) и
.
. An > Am, An >> Bn.
5) и
.
. An < Am.
6) Возможна и “азеотропная” точка, когда
[An] = [A] при и
и
(
и
не реализуется)
Итак, в случае радикальной полимеризации мы имеем дело с распределением продуктов по молекулярным массам и многомаршрутный процесс с бесконечно большим числом маршрутов. Продукты реакции Pi образуются в стадиях роста при передаче цепи на мономер.
Второй путь образования продуктов (полимерных молекул) – стадии обрыва цепи на Xi и Xj.
Катионная полимеризация
В присутствии кислотных протонных центров при полимеризации олефинов образуются ионы карбения (сольватированные растворителем или анионами в контактных ионных парах), участвующие в стадиях роста цепи аналогично механизму димеризации пропилена, рассмотренному выше. Рассмотрим подробнее механизм полимеризации кислородных гетероциклов
Активным центром растущей цепи в этих реакциях являются ионы алкоксония, т.е., по существу, сольватированные кислородным центром ионы карбения, которые, вероятно, не существуют как кинетически независимые частицы. Передача R+ на мономер происходит в результате атаки мономером фрагмента с разрывом связи С–О и образованием новой связи С–О.
Активными инициаторами процесса являются соли триалкилоксония Et3O+BF4-. В отсутствие примесей, например, воды, спиртов, процесс протекает без обрыва цепи и образуются “живущие” полимеры, сохраняющие активный центр. Введение воды обрывает активный центр и получается необходимая макромолекула
При исследовании полимеризации этого типа была обнаружена новая стадия передачи цепи – передача цепи на полимер с разрывом молекулярной цепи.
При полимеризации кислородных гетероциклов получаются биодеградируемые полимеры, в том числе медицинского назначения.
Анионная полимеризация
Основой анионной полимеризации полярных виниловых мономеров и диенов является образование карбанионных активных центров. В случае инициирования полимеризации литий-, натрий- или калийорганическими соединениями при отсутствии передачи цепи и протонсодержащих примесей образуются “живущие” полимеры (безобрывная полимеризация). Первый карбанионный центр появляется в результате различных реакций мономерной молекулы
Последний механизм имеет место при полимеризации бутадиена-1,3 на металлическом натрии.
Образование “живущих” полимеров позволяет:
а) регулировать молекулярную массу полимера в случае быстрого инициирования соотношением мономер/инициатор;
б) получать монодисперсные полимеры;
в) проводить блок-сополимеризацию, добавляя последовательно различные мономеры.
В полярных растворителях частицы MR частично диссоциируют и в реакции полимеризации участвуют свободные анионы R– или ионные пары R–M+. при этом активность свободных ионов заметно выше активности ионных пар. Так, Na-полистирол в ТГФ при 25оС ведет реакции полимеризации стирола с константами роста kp
65000 л·моль–1сек–1 для R–
130 л·моль–1сек–1 для Na+R–
В этих условиях при полимеризации (или сополимеризации) бутадиена и изопрена получаются, в основном, 1,2-полибутадиен и 3,4-полиизопрен. В неполярных растворителях LiR ведет образование 1,4-цис-полиизопрена (основного блока натурального каучука). В неполярных углеводородах (гептан, толуол) литийорганические соединения находятся в виде ассоциатов – димеров, тетрамеров и гексамеров. В случае активных мономерных частиц LiR скорость реакции описывается уравнением
, (18)
где С – суммарная концентрация всех соединений LiR.
В случае литийполистирола n = 2, в случае литийполибутадиена n = 6. При равных концентрациях мономера и металлоорганического соединения скорость роста цепи увеличивается в ряду LiR < NaR < KR, т.е. с ростом полярности связи М–С.
В реакциях анионной полимеризации лактамов предполагалось, что активным центром растущей цепи является N-центрированный анион , взаимодействующий с мономером с разрывом связи
. Оказалось, что активный центр все время локализуется на мономере, а полимерный продукт реакции образуется в стадии передачи цепи на мономер. Образующиеся молекулы полимера реагируют с мономером, как в ступенчатых процессах поликонденсации. Таким образом, в каталитических циклах участвуют молекулы мономера и продукта
Итак,
Похожие работы
-
ОВР с участием органических веществ
ОВР с участием органических веществ В ОВР органических веществ с неорганическими органические вещества чаще всего являются восстановителями. Так, при сгорании органического вещества в избытке кислорода всегда образуется углекислый газ и вода. Сложнее протекают реакции при использовании менее активных окислителей.
-
Алканы
Алканы - это предельные углеводороды, в молекулах которых все атомы связаны одинарными связями. Формула - Физические свойства Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи
-
Координационная (каталитическая полимеризация)
Образование высокомолекулярного соединения из молекул-мономеров в ходе реакций полимеризации, поликонденсации. Процесс поликонденсации – ступенчатый процесс, в котором образующиеся продукты взаимодействуют друг с другом. Каталитическая полимеризация.
-
Образование сложных эфиров. Некоторые производные углеводов
Окисление углеводов в организме. Сложные эфиры. Превращение в циклические ацетали и кетали. Метод удлинения цепи по Килиани-Фишеру. Укорочение цепи по Руфу. Аскорбиновая кислота. Целлофан и вискозный шелк. Нитрат целлюлозы. Азотсодержащие сахара.
-
Альфа-метилстирол
Физические свойства. Строение молекул, анализ распределения электронной плотности, анализ реакционной способности. Химические свойства. Реакции полимеризации, полимеры. Получение.
-
Лебедев С.В.
Веком атомной энергии, веком электроники и космоса образно называют наше время. Однако столь же справедливо двадцатый век можно назвать и эпохой синтетических полимерных материалов. Огромную лепту в развитие науки в данном направлении внёс русский учёный-химик Сергей Васильевич Лебедев, который в своей деятельности успешно сочетал фундаментальные исследования с работами, имеющими большое практическое значение.
-
Химия (Шпаргалка)
Метан C2 H6 Этан C3 H8 Пропан C4 H10 Бутан C5 H12 Пентан C6 H14 Гексан C7 H16 Гептан C8 H18 Октан C9 H20 Нонан C10 H22 Декан 1.Все атомы, образ. молекулы орган. вещ-в, связаны в опред. послед. согласно их валентностям.
-
Органические соединения серы
Меркаптаны (тиолы) Тиоэфиры (сульфиды) Циклические оединения серы Сульфо- Сульфо - кислоты хлориды Общая Формула R-S-H R-S-R моноциклические полициклит-
-
Фолиевые краски
Фолиевые краски Tough Tex Plus, их назначение. Процесс полимеризации растительных масел и способность к пленкообразованию. Образование гидроперекисей олефинов с изолированными двойными связями. Физико-химические превращения и процесс полимеризации масла.
-
Функциональные производные карбоновых кислот
Классификация и разновидности производных карбоновых кислот, характеристика, особенности, реакционная способность. Способы получения и свойства ангидридов, амидов, нитрилов, сложных эфиров. Отличительные черты непредельных одноосновных карбоновых кислот.