Название: Дефокусировка. Сферическая аберрация 3 порядка. Кома и неизопланатизм
Вид работы: реферат
Рубрика: Коммуникации и связь
Размер файла: 83.07 Kb
Скачать файл: referat.me-167546.docx
Краткое описание работы: Дефокусировка, продольное смещение плоскости изображения. Сферическая аберрация, ею обладают все линзы со сферическими поверхностями. Структура пучка лучей при наличии комы. Условия апланатизма и изопланатизма. Закон синусов Аббе (условие апланатизма).
Дефокусировка. Сферическая аберрация 3 порядка. Кома и неизопланатизм
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
«Дефокусировка. Сферическая аберрация 3 порядка. Кома и неизопланатизм»
МИНСК, 2008
Дефокусировка
 . (1)
. (1) 
Дефокусировка не приводит к нарушению гомоцентричности пучка (рисунок 1), а только свидетельствует о продольном смещении плоскости изображения.

Рисунок 1 – Дефокусировка
При дефокусировке все лучи на выходе оптической системы пересекаются в одной точке, но не в точке идеального изображения. Поэтому в случае дефокусировки продольная аберрация постоянна для всех лучей (для всех точек зрачка):
 . (2)
 . (2) 
Если дефокусировки нет, то плоскость изображения совпадает с плоскостью Гаусса (плоскостью идеального изображения). Чтобы избавиться от дефокусировки, нужно просто соответствующим образом передвинуть плоскость изображения.
При анализе аберраций оптических систем принято строить графики зависимости поперечной, продольной, и волновой аберраций от зрачковых координат. Если в оптической системе присутствует только дефокусировка, то эти графики будут выглядеть как показано на рисунке 2.

Рисунок 2 – Графики аберраций для расфокусировки
Сферическая аберрация 3 порядка
 . (3)
. (3) 
Сферическая аберрация приводит к тому, что лучи, выходящие из осевой точки предмета, не пересекаются в одной точке, образуя на плоскости идеального изображения кружок рассеяния (рис.3). Ею обладают все линзы со сферическими поверхностями. Чтобы ее устранить, необходимо сделать поверхности не сферическими. Сферическую аберрацию 3 порядка называют также первичной сферической аберрацией.

Рисунок – 3. Сферическая аберрация
Продольная и поперечная аберрации в этом случае определяются выражениями:
 (4)
 (4)
 (5)
 (5) 
В простых положительных линзах сферическая аберрация 3 порядка отрицательна, а в отрицательных положительна. Графики волновой, продольной и поперечной аберраций в случае сферической аберрации 3 порядка представлены на рис.4.

Рисунок 4 - Графики аберраций для сферической аберрации 3 порядка
Сферическая аберрация 5 порядка
 . (5)
. (5) 
По характеру искажения гомоцентричности пучка лучей сферическая аберрация 5 порядка полностью аналогична сферической аберрации 3 порядка, только имеет более высокий порядок кривых на графиках поперечной и продольной аберраций.
В сложных системах сферические аберрации 3 и 5 порядков имеют разные знаки и могут взаимно компенсировать друг друга. На рис.5 представлен график оптимальной коррекции сферической аберрации 3 и 5 порядков для апертурного луча  . В результате коррекции остаточные аберрации становятся меньше, чем сами аберрации 3 и 5 порядка.
. В результате коррекции остаточные аберрации становятся меньше, чем сами аберрации 3 и 5 порядка. 

Рисунок 5 - Взаимокомпенсация сферической аберрации 3 и 5 порядков
Однако в случае сферической аберрации 3 и 5 порядков может быть и так, как показано на рис.6.: а) – аберрация «недоисправлена», б) – аберрация «переисправлена».

Рисунок 6 - Графики коррекции сферической аберрации.
Поскольку продольной дефокусировкой легко управлять путем перемещения плоскости изображения, то сочетая сферическую аберрацию и дефокусировку, можно выбрать наилучшее с точки зрения минимума главный луч сферической аберрации положение изображения. В частности, для сферической аберрации 3 порядка при помощи выражений (4), (5) можно вычислить положение изображения, в котором кружок рассеяния минимален. При этом продольное смещение изображения составляет 3/4 от продольной аберрации апертурного луча.
Кома
От греческого: kωμα – хвост, пучок волос.
Кома появляется при смещениях точки предмета с оси. Кома добавляется к другим аберрациям (например, к сферической), но мы будем рассматривать ее отдельно от других аберраций (рис.7).

Рисунок 7 - Структура пучка лучей при наличии комы.
В первом приближении кома прямо пропорциональна смещению предмета с оси. Если смещение равно нулю, то и кома равна нулю. Таким образом, поперечная аберрация при наличии комы прямо пропорциональна величине предмета:
 , (6)
, (6) 
где d – коэффициент пропорциональности, определяющий качество аберрационной коррекции оптической системы (чем меньше d, тем лучше оптическая система).
Разложение в ряд волновой аберрации при наличии комы 3 и 5 порядков:
 (7)
 (7) 
или  .
.
Выражение для поперечных аберраций будет выглядеть следующим образом:
 . (8)
 . (8) 
Описание поперечных аберраций комы различно для меридионального и сагиттального сечений. В меридиональном сечении  , следовательно:
, следовательно: 
 (9)
 (9) 
В сагиттальном сечении  , следовательно:
, следовательно: 
 . (10)
. (10) 
На рис.8 показаны графики поперечных аберраций для комы 3 порядка в меридиональном и сагиттальном сечениях. Кривые на графиках имеют одинаковую форму, но в меридиональном сечении значение  в 3 раза больше, чем в сагиттальном.
 в 3 раза больше, чем в сагиттальном. 

Рисунок 8 - Поперечные аберрации при коме 3 порядка
Для того чтобы лучше понять структуру поперечных аберраций при коме, рассмотрим точечную диаграмму лучей. Разобьем зрачок на множество равновеликих площадок и рассмотрим лучи, проходящие через центры этих площадок (рис.9.а). Получим картину лучей, равномерно распределенных по зрачку. Точки пересечения этих лучей с плоскостью изображения образуют точечную диаграмму (рис.9.б).

Рисунок 9 - Точечная диаграмма
Кома и неизопланатизм
В названии “неизопланатизм” присутствуют корни греческих слов: изос – одинаковый, равный, планета – блуждающее тело.
Изопланатизм (одинаково заблуждающийся) – в окрестности оси оптической системы нет комы, но есть сферическая аберрация (изображение разных точек предмета будет одинаково плохое).
Апланатизм – нет ни комы, ни сферической аберрации (изображение разных точек предмета идеальное). Апланатизм может выполняться только для какой-то части предмета, например в окрестности оси.
О возможной величине комы можно судить, не смещая точку с оси, если количественно оценить неизопланатизм. Такая оценка возможна, если использовать условия апланатизма и изопланатизма.
Закон синусов Аббе (условие апланатизма):
 . (11)
. (11) 
Если это условие выполняется для всех лучей, то нет ни комы, ни сферической аберрации.
Если присутствует сферическая аберрация, то вместо условия апланатизма используется похожее условие – условие изопланатизма:
 . (12)
 . (12) 
Рис. 10 показывает разницу в определении двух условий – условия синусов Аббе и условия изопланатизма.

Рисунок 10 - Углы лучей, используемые в условиях апланатизма и изопланатизма.
Если условие изопланатизма выполняется, то комы в ближайшей окрестности осевой точки не будет. Относительное отступление от изопланатизма (так называемая мера комы) определяется следующим выражением:
 . (13)
. (13) 
Поперечная аберрация комы 3 порядка для точки изображения с координатой  может быть представлена следующим образом:
 может быть представлена следующим образом: 
 (14)
 (14) 
ЛИТЕРАТУРА
1. Бегунов Б.Н., Заказнов Н.П. и др. Теория оптических систем. – М.: Машиностроение, 2004
2. Заказнов Н.П. Прикладная оптика. – М.: Машиностроение, 2000
3. Дубовик А.С. Прикладная оптика. – М.: Недра, 2002
4. Нагибина И.М. и др. Прикладная физическая оптика. Учебное пособие.- М.: Высшая школа, 2002
Похожие работы
- 
							Формы представления аберраций поперечная продольная волновая Монохроматические аберрации
							БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра ЭТТ РЕФЕРАТ На тему: «Формы представления аберраций (поперечная, продольная, волновая). Монохроматические аберрации» 
- 
							Описание оптических систем
							БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ кафедра ЭТТ РЕФЕРАТ на тему: Описание оптических систем МИНСК, 2008 Элементы оптических систем 
- 
							Теория идеальных оптических систем параксиальная или гауссова оптика
							БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ кафедра ЭТТ РЕФЕРАТ на тему: Теория идеальных оптических систем (параксиальная или гауссова оптика) 
- 
							Фокусировка приборов. параллакс и его устранение
							Параллакс и его устранение. Продольный, поперечный, угловой параллакс. Параллактический угол. Юстировка оптических приборов. Сборка телескопических приборов. Диафрагмирование. Прицельные и измерительные приборы. Фокальная плоскость. Коллиматор. 
- 
							Астигматизм и кривизна изображения. Хроматические аберрации
							Дисторсия ("искажение") абсолютная и относительная. Хроматические аберрации, проявление зависимости характеристик оптической системы от длины волны света. Принципы ахроматизации оптических систем. Абсолютный и относительный хроматизм увеличения. 
- 
							Измерение фокусных, вершинных фокусных и рабочих расстояний оптических систем
							Оптических система. Оптические характеристики приборов и деталей: вершинные фокусные расстояния, фокусные расстояния, рабочие расстояния. Обработка деталей оптических приборов. Определение фотографической разрешающей силы. Окуляр-микрометр. Коллиматор. 
- 
							Законы Кирхгофа, принцип наложения и эквивалентного источника энергии. Работа в среде MicroCAP
							Формулировка первого и второго законов Кирхгофа, их проверка с помощью построения электрических схем в среде MicroCAP. Анализ теоремы наложения. Определение параметров эквивалентных источников энергии. Модулирование проверки законов на программном уровне. 
- 
							Свойства оптического сигнала
							Оптический сигнал как световая волна, несущая определенную информацию, ее особенности и математическое обоснование, основные характеристики. Сущность и виды дифракции света. Пути преобразования световых полей различными элементами оптических систем. 
- 
							Автоколлимационные зрительные трубы. Широкоугольные коллиматоры. Ошибки изготовления и положения оптических деталей приборов
							Особенности применения: автоколлимационной трубы, динаметров, прибора Юдина, апертометра Аббе. Широкоугольные коллиматоры. Параметры гониометра. Ошибки изготовления оптических деталей приборов и их влияние на отклонение параметров оптических систем. 
- 
							Структура и качество оптического изображения
							БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра ЭТТ РЕФЕРАТ На тему: «Структура и качество оптического изображения»