Referat.me

Название: Измерение параметров и характеристик сверхвысокочастотных линий связи и их компонентов

Вид работы: реферат

Рубрика: Коммуникации и связь

Размер файла: 87.2 Kb

Скачать файл: referat.me-169710.docx

Краткое описание работы: Общие сведения и классификация методов и приборов СВЧ цепей. Основные методы и средства измерений параметров СВЧ цепей. Обобщенная структурная схема измерителя (анализатора). Измерительные направленные ответвители. Скалярные анализаторы цепей.

Измерение параметров и характеристик сверхвысокочастотных линий связи и их компонентов

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ ИРАДИОЭЛЕКТРОНИКИ

Кафедра метрологии и стандартизации

РЕФЕРАТ

На тему:

«Измерение параметров и характеристик сверхвысокочастотных линий связи и их компонентов»

МИНСК, 2008


Общие сведения и классификация методов и приборов СВЧ цепей

К цепям с распределенными постоянными (СВЧ цепям) относятся цепи, геометрические размеры которых соизмеримы с длиной волны распространяющихся вдоль них колебаний.

СВЧ цепи можно разбить на: двухполюсники (ДП) и четырехполюсники (ЧП).

Из теории длинных линий известно, что для полного описания свойств двухполюсников (ДП) достаточно знать волновое (характеристическое) сопротивление линии (W), на котором он сконструирован, и комплексный коэффициент отражения в рабочем диапазоне частот.

Комплексный коэффициент отражения определяется как отношение комплексной амплитуды напряжения волны отраженной от ДП к комплексной амплитуде напряжения волны, падающей на него:

. (1)

Значение и характер позволяет оценить качество согласования полного сопротивления ДП с волновым сопротивлением тракта. Количественно эта связь определяется отношением

. (2)

На практике также часто пользуются значением коэффициента стоячей волны по напряжению (КСВН)

КСВН – определяется как отношение максимальной (Umax) и минимальной (Umin) амплитуд электрического поля стоячей волны в линии передачи:

. (3)

На рисунке 1,в показана картина стоячих волн напряжения в линии передачи СВЧ (рисунок 1,а). В этой линии имеет место интерференция падающих (Uп ) и отраженных волн (U0). На рисунке 1,б показана векторная диаграмма, показывающая образование суммарного сигнала UΣ.

Значения и связаны между собой следующим соотношением:

. (4)

Описанные выше параметры полностью определяют номенклатуру измеряемых параметров ДП.


Номенклатуру измеряемых параметров ЧП составляют элементы матрицы S-параметров:

, (5)

Эту матрицу называют еще матрицей рассеяния. Смысл ее элементов следующий.

На приведенном ниже рисунке 2 приведена эквивалентная схема ЧП на СВЧ.


Рисунок 2

Напряжение нормированные комплексные амплитуды волн, реально падающие на ЧП, отраженных от него и прошедших через него. Элементы матрицы S – параметров представляют собой комплексные коэффициенты отражения и передачи ЧП и определяются из выражений

– коэффициент отражения входа ЧП;

– коэффициент отражения выхода ЧП;

– коэффициент передачи со входа на выход;

Коэффициент передачи с выхода на вход .

Для измерения описанных выше параметров на практике используется следующие приборы:

Р1 – измерительные линии;

Р2 – панорамные измерители коэффициентов отражения и передачи (скалярные анализаторы цепей – САЦ);

Р3 – измерители полных сопротивлений;

Р4 – измерители S-параметров (векторные анализаторы цепей – ВАЦ);

Р5 – измерители неоднородностей линий передачи (импульсные рефлектометры).

Методы измерения, на которые базируются приборы перечисленных видов можно разбить на три группы:

1) основанные на анализе распределения поля стоячей волны в линии передачи (Р1и Р3);

2) связанные с выделением и измерением отношений направлений падающих, отраженных и прошедших волн (Р2 и Р4);

3) метод импульсной (временной) рефлектометрии (Р5).

Основные методы и средства измерений параметров СВЧ цепей

Обобщенная структурная схема измерителя (анализатора) СВЧ цепей

Обобщенная структурная схема измерителя СВЧ цепей представлена на рисунке 3.

Назначение и основные функции блоков измерителя:

Генератор качающейся частоты (ГКЧ) - формирование СВЧ измерительного сигнала и управление этим сигналом;

СВЧ измерительный тракт - выделение информационных СВЧ измерительных сигналов;

Преобразователь информационно - измерительных сигналов - преобразование информационных - измерительных сигналов из СВЧ диапазона в НЧ диапазон;

Блок измерительный:

- фильтрация и усиление преобразованных сигналов;

- функциональные преобразования сигналов;

- управление процессом измерения;

- индикация и отсчет результатов измерения.


Типы измерительных трактов и их компоненты

По принципу действия схемы измерительных трактов делятся на:

– интерференционные;

– рефлектометрические.

Интерференционные схемы используются в измерительных линиях. Принцип действия рефлектометрических схем основан на выделении с помощью направленных ответвителей сигналов пропорциональных мощностям падающей, отраженной и прошедшей волн.


Измерительные направленные ответвители

На рисунке 4,а изображен однонаправленный волноводный ответвитель, ориентированный на отраженную волну, а на рисунке 4,б – схемы сложения возбуждающихся волн.

Под воздействием токов, протекающих по стенкам основного волновода щели А и В возбуждают во вторичном волноводе электромагнитной волны, которая распространяется в разные стороны от щелей. Если энергия падающей волны Рn распространяется слева направо, то поле, возбужденное щелью А, сложится в фазе с полем, возбужденным В, так как пути пройденные ими равны и равны λв/4 (диаграмма 1). Энергия суммарного поля во вторичном волноводе поглотится согласованной нагрузкой (СН). Поля этой же волны распространяющиеся во вторичном волноводе справа налево сложатся в противофазе (диаграмма 2), так как пути, пройденные ими будут отличаться на λв/2 и если они равны, то (т.е. они взаимно уничтожаются).

Таким образом энергия поля, возбуждающегося во вторичном волноводе под действием падающей волны не вызовет тока в цепи детектора.

Аналогичное рассмотрение процесса сложения полей, возбужденных щелями А и В при распространении энергии отраженной волны (диаграммы 3,4), позволяет сделать вывод о том, что ток, вызываемый в цепи детектора будет пропорциональным мощности отраженной волны .

Если переориентировать направление ответвления на падающую волну, то ток детектора будет пропорционально .


0

Основными параметрами направленных ответвителей являются – переходное ослабление, направленность и КСВН входов (выходов).

Переходное ослабление – величина связи первичного и вторичного каналов направленных ответвителей. Оно обычно выражается в децибелах и равно:

. (6)

В измерителях обычно используются направленные ответвители с С=10 или 20 дБ.

Направленность ответвителя – величина, характеризуется «просачивание» в плечо с детектором поля неосновной волны, то есть волны, противоположной той, на которую ориентирован направленный ответвитель. Направленность также определяется в децибелах и равна:

, (7)

Промышленные направленные ответвители имеют направленность порядка 30…50 дБ с КСВН входов от 1,1 до 1,3.

Скалярные анализаторы цепей

Современные скалярные анализаторы цепей (панорамные измерители коэффициентов отражения и передачи) состоят из ГКЧ с системой автоматического регулирования мощности (АРМ), СВЧ измерительного тракта (рефлектометра), состоящего из трех последовательно соединенных направленных ответвителей и унифицированного индикатора.

Структурная схема скалярного анализатора представлена на рисунке 5.

На выходе ГКИ формируется частотно- и амплитудно-модулированный СВЧ сигнал постоянного уровня. Для частотной модуляции в качестве модулирующего направления используется сигнал генератора развертки, который конструктивно входит в ГКЧ. Амплитудная модуляция обычно осуществляется напряжением типа «меандр» частоты 100 КГц от внутреннего или внешнего источника модулирующего напряжения. Постоянство выходной мощности ГКЧ поддерживается с помощью системы АРМ, которая работает по сигналу , подаваемому из индикатора в генератор.

Использование измерителя отношений в индикаторном блоке существенно снижает требования к качеству стабилизации выходной мощности ГКЧ.

ГКЧ включает в себя и блок частотных меток. Выходные сигналы этого блока после преобразования в индикаторе воспроизводятся на изображении исследуемых характеристик в виде подвижных частотных меток.

Измерительный тракт состоит из трех направленных ответвителей (НО). НО1 ответвляет сигнал пропорциональный мощности падающей волны Рn ; НО2 - мощности отраженной волныР0 ; НО3 - мощности прошедшей волны Рпр .

Сигналы НО детектируются квадратичными детекторами. Выходные напряжения детекторов позволяют определить модуль коэффициента отражения:

, (8)

и ослабление:

, (9)

Для скалярных анализаторов цепей характерно применение унифицированного индикатора КСВ и ослабления, работающего на частоте амплитудной модуляции ГКЧ. Этот индикатор обеспечивает усиление сигналов пропорциональных ,,, деление их с помощью измерителя отношений, детектирование и панорамное воспроизведение на экране ЭЛТ измеряемых характеристик в линейном и логарифмическом масштабах с отсчетом значений измененных величин.

Источники погрешности скалярных анализаторов цепей:

1) неточность установки и нестабильность частоты ГКЧ;

2) неидеальность и неиндентичность направленных ответвителей;

3) погрешности индикатора;

4) неквадратичность характеристик детекторов.


ЛИТЕРАТУРА

1Метрология и электроизмерения в телекоммуникационных системах: Учебник для вузов /А.С. Сигов, Ю.Д. Белик. и др./ Под ред. В.И. Нефедова. – 2-е изд., перераб. и доп. – М.: Высш. шк., 2005.

2Бакланов И.Г. Технологии измерений в современных телекоммуникациях. – М.: ЭКО-ТРЕНДЗ, 2007.

3Метрология, стандартизация и измерения в технике связи: Учеб. пособие для вузов /Под ред. Б.П. Хромого. – М.: Радио и связь, 2006.

Похожие работы

  • Эксплуатация и технология измерений систем Е1

    1. Поток Е1 Системы передачи Е1 получили широкое распространение в современных телекоммуникациях. Поток Е1 используется не только в первичной сети, но и во вторичных сетях. Наиболее общая схема системы передачи Е1 представлена на рис. 1.

  • Оценка числовых характеристик случайной погрешности на основе эксперимента

    Пояснительная записка к курсовой работе по дисциплине «Методы и средства измерений, испытаний и контроля» На тему: «Оценка числовых характеристик случайной погрешности на основе эксперимента»

  • Векторные анализаторы цепей. Контроль и диагностика компонентов цифровых сетей и систем телекоммуникаций

    Скалярные анализаторы цепей (ВАЦ) как база для создания гетеродинных векторных анализаторов: разница в устройстве. Достоинства и недостатки гетеродинных ВАЦ. Упрощенная схема гомодинных векторных анализаторов цепей. Классификация методов измерения.

  • Анализ компонентов системы передачи Е1

    Анализ работы мультиплексоров Е1, процедур мультиплексирования и демультиплексирования. Методы стрессового тестирования мультиплексора. Характеристика регенераторов, используемых в системах передачи Е1 для восстановления и усиления цифрового сигнала.

  • Измерение напряженности электромагнитного поля и помех

    Основные понятия и классификация приборов для измерения напряженности электромагнитного поля и помех. Измерение напряженности электромагнитного поля. Метод эталонной антенны. Метод сравнения. Измерительные приемники и измерители напряженности поля.

  • Исследование цепей постоянного тока 2

    Лабораторная работа №1 Исследование цепей постоянного тока Цель: Провести анализ цепей постоянного тока. Проанализировать влияние вида резисторов на параметры режима электрической цепи. Проверить выполнение законов Кирхгофа и баланса мощностей.

  • Селективные вольтметры частотно селективные вольтметры или вольтметры несущей частоты

    БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ ИРАДИОЭЛЕКТРОНИКИ Кафедра метрологии и стандартизации РЕФЕРАТ На тему: «Селективные вольтметры, частотно-селективные вольтметры или вольтметры несущей частоты»

  • Автоматизация измерений

    Направления автоматизации измерений. Применение микропроцессоров в измерительных приборах. Измерительно-вычислительный комплекс как автоматизированное средство измерений, имеющее в своем составе микропроцессоры. Номенклатура входящих в ИВК компонентов.

  • План по многоканальной связи

    Рассмотрены принципы образования современных многоканальных систем, построение стандартных каналов тч, групповых и линейных трактов и их использование для передачи различных видов сигналов (телефонных, телеграфных, фототелеграфных, сигналов вещания и др.). Дано понятие о системе ТАСИ и вокодерах.

  • Виды сигналов, их спектры. Приборы для анализа спектров сигналов

    Сигнал - материальный носитель информации и физический процесс в природе. Уровень, значение и время как основные параметры сигналов. Связь между сигналом и их спектром посредством преобразования Фурье. Радиочастотные и цифровые анализаторы сигналов.