Название: Определение ударной вязкости
Вид работы: лабораторная работа
Рубрика: Промышленность и производство
Размер файла: 483.27 Kb
Скачать файл: referat.me-302462.docx
Краткое описание работы: Методика приготовления механического копра и шаблонов для установки образца. Определение ударной вязкости с использованием таблиц. Искривление образцов в зависимости от вязкости стали при испытании на удар. Проведение испытания на ударную вязкость.
Определение ударной вязкости
Лабораторная работа 3
Тема: Определение ударной вязкости.
Цель: Научиться определять ударную вязкость расчетно, а также с использованием таблиц.
Оборудование: маятниковый копер, образцы для испытания на удар, штангенциркуль, шаблоны.
Данные для расчётов:
α-угол подъёма маятника до испытания, α=69о
β-угол вылета маятника после испытаний, β=6о
L-длинна плеча маятника, равна 2,1 м
P-Вес маятника, равен 7 кг
b-длинна грани квадратного сечения образца, равна 0,002 м
F-Площадь поперечного сечения квадратного образца (м2 ) F=b2
H-высота подъёма маятника до испытаний (м)
h-высота вылета маятника после испытаний (м)
Ар -работа определяемая расчетно (кГм)
Ат –работа затраченная на разрушение образца определяемая по таблице (кГм)
ап -ударная вязкость определяемая по таблице (кГм/см2 )
KCU-ударная вязкость определяемая расчётно (кГм/см2 )
Задание.
1. Описать методику приготовления к испытаниям на ударную вязкость (приготовление механического копра и шаблонов для установки образца).
2. Провести испытания на ударную вязкость.
3. Определить ударную вязкость с помощью расчётов.
4. Определить ударную вязкость с использованием таблиц.
5. Составить отчёт согласно пунктам задания.
Ход работы
1. Подготовка образца для испытания.
Для испытания на ударную вязкость применяют образец, показанный на рис. 3.1. Образец измеряют с точностью до 0,1 мм; данные измерения записывают в графу 2 протокола испытания.
По данным измерения вычисляют площадь поперечного сечения образца и записывают в графу 3 протокола испытания.
Рисунок 3.1 Образец для испытания на удар
Рисунок 3.2 Шаблон для установки опор симметрично относительно ножа маятника
Рисунок 3.3 Шаблон для установки надреза образца симметрично относительно опор и ножа маятника.
2. Подготовка копра и проведение испытания.
При помощи шаблона 1 (рисунок 3.2) установить опоры 2 симметрично относительно ножа маятника 3 и закрепить их. Подвести стрелку к нулю до упора в штифт. Поднять немного маятник и поместить образец 1 (рисунок 3.3) на опоры 3 копра надрезом в сторону, противоположную удару ножа маятника. При помощи шаблона 2 установить надрез образца симметрично относительно опор и ножа маятника. Поднять маятник в верхнее положение и закрепить защелкой, при этом стрелка отклонится и будет указывать угол подъёма маятника. Угол α начального подъема маятника записать в графу 4 протокола испытания.
Запрещается устанавливать образец, когда маятник поднят на полную высоту и установлен на защелку. В этом положении маятник представляет большую опасность для работающих, так как при. случайном освобождении защелки может причинить тяжелые увечья.
Подвести стрелку к нулю шкалы до упора в штифт. Отпустить защёлку и произвести удар по образцу. Остановить качание маятника натяжением (при помощи рукоятки) ременного тормоза. Определить по шкале угол β взлета маятника после удара и записать в графу 5 протокола испытания.
Рисунок 3.4 Искривление образцов в зависимости от вязкости стали при испытании на удар.
Если образец не сломался, что может быть в случае недостаточного запаса энергии копра или в случае очень вязкого материала (рис. 3.4), то в протоколе испытания отмечается «не сломался». Для излома другого образца увеличивается запас энергии маятника поднятием его на большую высоту.
Найти работу Ар затраченную на разрушение образца.
3. Ударная вязкость определяется с помощью формулы
(3.1)
(кгм/см2
)
Работа по излому образца определяется по формуле
Ар =P(H-h) (3.2)
Aр =7(1,347-0,011)=9,352 (кгм)
Высота подъёма маятника до испытания определяется с помощью формулы
H=L(1-cosα) (3.3)
H=2,1(1-cos69o )=1,347 (м)
Высота вылета маятника после испытания
h=L(1-cosβ) (3.4)
h=2,1(1-cos6)=0,011 (м)
Площадь поперечного сечения
F=b2 (3.5)
F=0,0022 =0,000004 (мм2 )
4. Определение ударной вязкости с помощью таблиц.
Чтобы не вычислять величину Ан но формуле, пользуются специальной таблице, в которой для каждого угла α начального подъема маятника и угла β взлета маятника указана величина работы Ат =1,95 кГм
Ударная вязкость определяется в этом случае по той же формуле ап =Ат /F
ап =1,95/0,000004 =487500 (кгм/см2 )
Вывод: Ударная вязкость показывает, какой стойкостью обладает материал к ударному излому.
Похожие работы
-
Улучшение качественных характеристик металла шва за счет повышения чистоты шихты
Министерство образования и науки Украины Запорожский национальный технический университет Кафедра ОТСП ОТЧЕТ ПО НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ СТУДЕНТОВ
-
Характеристика металлического состояния Общая характеристика свойств металлов
Министерство образования и науки Украины Донбасский государственный технический университет Институт повышения квалификации КОНТРОЛЬНАЯ РАБОТА
-
Закалка и отпуск углеродистых сталей
Описание порядка применения закалки углеродистых сталей и определение температуры закалки согласно заданию. Вычисление необходимой продолжительности закалки. Назначение отжига и определение его времени согласно заданию. Правила составления протокола.
-
Определение перемещений и напряжений при ударном нагружении элементов конструкций Оценка ударной
Отчет по лабораторной работе «Определение перемещений и напряжений при ударном нагружении элементов конструкций» Цель работы: определение динамических перемещений и напряжений в балке и пружине; сравнение расчетных и экспериментальных значений определяемых величин. Удар возникает при взаимодействии двух или нескольких тел (элементов конструкций) с резко различными скоростями.
-
Расчет нефтепроводов
Гидравлический при изотермическом движении потока Задача 3-1 Дебит скважины по жидкости 50 м3/сут. (40% нефти и 60% воды); относительный удельный вес жидкости 0,95; известна кинематическая вязкость до обводнения – 28,5 сСт; температура нефти и окружающей трубопровод среды 20 0С; длина выкидной линии 900 м; нивелирная разность отметок конца и начала выкидной линии плюс 8 м; потери на местные сопротивления 1 м; а линейные потери равны 3 кгс/см2.
-
Виброреология дисперсных систем
1. Основы виброреологии По способности к течению среды, подвергающиеся вибрационному воздействию, делятся на две группы: Первая группа – это среды, для которых кривая течения может быть построена в статических условиях.
-
Производственные технологии
Проведение испытаний на ударный изгиб на маятниковых копрах с целью оценки склонности металла к хрупкому разрушению. Сравнение особенностей поломки материала от усталости и статической нагрузки. Определение критериев конструкционной прочности деталей.
-
Физические и химические свойства
Физические свойства металлов. Способность металлов отражать световое излучение с определенной длиной волны. Плотность металла и температура плавления. Значение теплопроводности металлов при выборе материала для деталей. Характеристика магнитных свойств.
-
Влияние углерода и постоянных примесей на структуру и свойства сталей
Углеродистые стали как основная продукция чёрной металлургии, характеристика их состава и компоненты. Влияние концентрации углерода, кремния и марганца, серы и фосфора в сплаве на свойства стали. Роль азота, кислорода и водорода, примесей в сплаве.
-
Пневматические и механические испытания
Разрушающие методы контроля с целью получения необходимых характеристик сварного соединения. Испытание образцов статическим растяжением. Микроструктурный анализ с помощью специальных микроскопов. Варианты пневматических и виды гидравлических испытаний.