Название: Классификация объектов нечисловой природы на основе непараметрических оценок плотности
Вид работы: доклад
Рубрика: Промышленность и производство
Размер файла: 73.03 Kb
Скачать файл: referat.me-304125.docx
Краткое описание работы: КЛАССИФИКАЦИЯ ОБЪЕКТОВ НЕЧИСЛОВОЙ ПРИРОДЫ НА ОСНОВЕ НЕПАРАМЕТРИЧЕСКИХ ОЦЕНОК ПЛОТНОСТИ. В СССР в середине 70-х годов активно ведутся работы по статистическому анализу нечисловых данных [1]. В настоящее время во Всесоюзном центре статистических методов и информатики мы при разработке методических документов и программных продуктов по прикладной статистике делим ее на четыре части соответственно виду обрабатываемых статистических данных: на статистику случайных величин, многомерный статистический анализ, статистику временных рядов и случайных процессов, статистику объектов нечисловой природы (другими словами, статистику нечисловых данных).
Классификация объектов нечисловой природы на основе непараметрических оценок плотности
КЛАССИФИКАЦИЯ ОБЪЕКТОВ НЕЧИСЛОВОЙ ПРИРОДЫ НА ОСНОВЕ НЕПАРАМЕТРИЧЕСКИХ ОЦЕНОК ПЛОТНОСТИ.
В СССР в середине 70-х годов активно ведутся работы по статистическому анализу нечисловых данных [1]. В настоящее время во Всесоюзном центре статистических методов и информатики мы при разработке методических документов и программных продуктов по прикладной статистике делим ее на четыре части соответственно виду обрабатываемых статистических данных: на статистику случайных величин, многомерный статистический анализ, статистику временных рядов и случайных процессов, статистику объектов нечисловой природы (другими словами, статистику нечисловых данных).
Вероятностный и статистический анализ нечисловых данных сопровождали теорию вероятностей и математическую статистику с самого начала их развития. Типичными примерами являются урновые схемы и изучение рождаемости. Испытание Бернулли- вероятностная модель простейшего объекта нечисловой природы. Наиболее массовым применением статистических методов является, видимо, выборочный контроль качества продукции по альтернативному признаку (т. е. по признаку "годен” - “не годен"), относящийся, очевидно, к статистике объектов нечисловой природы [2].
Развитие прикладных исследований привело к необходимости рассмотрения в качестве статистических данных различных объектов нечисловой природы. Этот термин применяем к объектам, которые нецелесообразно рассматривать как описанные числами. Другими словами, речь идет об элементах пространства, не являющихся линейными (векторными). Примеры: бинарные отношения (ранжировки, разбиения, толерантности и т. д.); множества; нечеткие множества; результаты измерений в шкалах, отличной от абсолютной; как обобщение перечисленных объектов - элементы пространств общей природы. Для результатов наблюдений, являющихся объектами нечисловой природы, рассматривают [1] классические задачи статистики: описание данных (включая классификацию) оценивание (параметров, характеристик, плотности распределения, регрессионной зависимости и т. д.).
Математический аппарат статистики объектов нечисловой природы основан не на свойстве линейности пространства, а на применении симметрик и метрик в нем, поэтому существенно отличается от классического.
В прикладных работах наиболее распространенный пример объектов нечисловой природы - разнотипные данные. В этом случае реальный объект описывается вектором, часть координат которого - значения количественных признаков, а часть - качественных (номинальных и порядковых).
Основная цель настоящего раздела - обосновать новый подход [3] к классификации в пространствах произвольной природы, основанный на построении не параметрических оценок плотности распределений вероятности в таких пространствах [4].
" Пусть - измеримое пространство,.
и
. суть
-конечные меры на
., причем
абсолютно непрерывна относительно
, т. е. из равенства.
. =0 следует равенство
=0, где
.. В этом случае на
существует неотрицательная измеримая функция такая, что
для любого Функция называется производной Родона-Никодима меры
по мере
, а в случае, когда
- вероятностная мера, также плотностью вероятности
по отношению к
. " [5]
Будем считать, что в пространстве объектов нечисловой природы фиксирована некоторая мера , а мера
соответствует распределению Р случайного элемента
со знаниями в измеримом пространстве
, т. е.
Если - пространство из конечного числа точек, то в качестве меры
можно использовать считающую меру (приписывающую единичный вес каждой точке), т. е.
, или
В случае считающей меры значение плотности в точке совпадает с вероятностью попасть в точку
, т. е.
Многие методы классификации используют расстояния или меры близости между объектами или признаками. Такие методы пригодны и для классификации объектов нечисловой природы, лишь бы в соответствующем пространстве было определено расстояние или мера близости. Таким образом, широко известные иерархические агломеративные алгоритмы ближайшего соседа, дальнего соседа, средней связи и др., результатом работы которых являются дендрограммы, на самом деле относятся к статистике объектов нечисловой природы.
Не пытаясь рассмотреть все многообразие методов классификации в статистике объектов нечисловой природы (см., например, [6, 7]), сосредоточимся на тех из них, которые используют плотности распределения и их оценки. Зная плотности распределения классов, можно решать основные задачи классификации - как задачи выделения кластеров, так и задачи диагностики. В задачах кластер-анализа можно находить моды плотности и принимать их за центры кластеров или за начальные точки итерационных методов типа динамических сгущений. В задачах диагностики (дискриминации, распознавания образов с учителя) можно принимать решения о классификации объектов на основе отношения плотностей, соответствующих классам. При неизвестных плотностях представляется естественным использовать их состоятельные оценки. Корректность такой постановки, как правило, нетрудно обосновать, например, в стиле [8]. Таким образом, для переноса на пространства произвольной природы основных методов классификации рассматриваемого типа достаточно уметь оценивать плотность распределения вероятности в таких пространствах.
Методы оценивания плотности вероятности в пространствах общего вида предложен и первоначально изучены в [4]. В частности, в задачах классификации объектов нечисловой природы предлагаем использовать непараметрические ядерные оценки плотности типа Парзена-Розенблатта (этот вид оценок и его название введены нами в [4]):
,
где К: - ядерная функция
- выборка по которой оценивается плотностью,
- расстояние между элементом выборки
и точкой
, в которой оценивается плотность последовательность
показателей размытости такова, что при
0 и n
, а
- нормирующий множитель, обеспечивающий выполнение условия
Оценки типа Парзена-Розенблатта - частный случай линейных оценок [4]. В теоретическом плане они выделяются тем, что удается получать результаты такого же типа, что в классическом одномерном случае (), но, разумеется, с помощью совсем иного математического аппарата.
Одна из основных идей состоит в том, чтобы согласовать между собой расстояние и меры
. А именно, рассмотрим шары радиуса
и их меры
Предположим, что как функция
при фиксированном
непрерывна и строго возрастает. Введем функцию
Это - монотонное преобразование расстояния, а потому - метрика или симметрика (т. е. неравенство треугольника может быть не выполнено), которую, как и
, можно рассматривать как меру близости между
и
.
Введем
.
Поскольку определена однозначно, то
^
где ., а потому
Переход от к
напоминает классическое преобразование, использованное Н. В. Смирновым,
, переводящее случайную величину
с непрерывной функцией распределения
в случайную величину
, равномерно распределенную на [ 0, 1]. Оба рассматриваемых преобразования существенно упрощают дальнейшие рассмотрения.
Преобразование зависит от точки
, что не влияет на дальнейшие рассуждения, поскольку ограничиваемся изучением сходимости в точке.
Функцию , для которой мера шара радиуса
равна
, называют [4] естественным показателем различия или естественной метрикой. В случае пространства
и евклидовой метрики
имеем
где -объем шара единичного радиуса в
.
Поскольку можно записать, что
где
то переход от к
соответствует переходу от
к
. Выгода от такого перехода заключается в том, что утверждения приобретают более простую формулировку.
ТЕОРЕМА 1. Пусть - естественная метрика,
Плотность непрерывна в
и ограничена на
, причем
. Тогда
, оценка
является состоятельной, т. е.
по вероятности при
,
Теорема 1 доказана в [4]. Однако остается открытым вопрос о скорости сходимости ядерных оценок, т. е. о поведении величины
и об оптимальном выборе показателей размытости .
Введем круговое распределение и круговую плотность
.
ТЕОРЕМА 2. Пусть ядерная функция непрерывна и
при
. Пусть круговая плотность допускает разложение
причем остаточный член равномерно ограничен [0, 1,...., ]. Пусть
Тогда
Величина достигает минимума, равного
при
что совпадает с классическими результатами для (см. [9, с316]). Заметим, что для уменьшения смещения оценки приходится применять знакопеременные ядра
.
В случае дискретных пространств естественных метрик не существует. Однако можно получить аналоги теорем 1 и 2 переходя к пределу не только по объему выборки , но и по параметру дискретности
.
Пусть - последовательность конечных пространств,
- расстояния в
для любого
.
Положим
,
,
,
Тогда функции кусочно постоянны и имеют скачки в некоторых точках
, причем
.
ТЕОРЕМА 3. Если при
(другими словами,
при
), то существует последовательность параметров дискретности
такая, что при
,
,
справедливы заключения теорем 1 и 2.
ПРИМЕР 1. Пространство всех подмножеств конечного множества
из
элементов допускает [10, Пар 4. 3] аксиоматическое введение метрики
, где
- символ симметрической разности множеств. Рассмотрим непараметрическую оценку плотности типа Парзена - Розенблатта
, где
- функция нормального стандартного распределения. Можно показать, что эта оценка удовлетворяет условиям теоремы 3
.
ПРИМЕР 2. Рассмотрим пространство функций , определенных на конечном множестве
со значениями в конечном множестве
. Это пространство можно интерпретировать как пространство нечетких множеств [11]. Очевидно,
. Будем использовать расстояние
. Непараметрическая оценка плотности имеет вид:
.
Если ,
, то при
выполнены условия теоремы 3, а потому справедливы теоремы 1 и 2.
. ПРИМЕР 3. Рассматривая пространства ранжировок объект непреов, в качестве расстояния
между ранжировками
и
. Тогда
. не стремиться к 0 при
., условия теоремы 3 не выполнены.
Пространства разнотипных признаков - это декартово произведение непрерывных и дискретных пространств. Для него возможны различные постановки. Пусть, например, число градаций качественных признаков остается постоянным. Тогда непараметрическая оценка плотности сводится к произведению частоты попадания в точку в пространстве качественных признаков на классическую оценку Парзена-Розенблатта в пространстве количественных переменных. В общем случае расстояние можно, например, рассматривать как сумму евклидова расстояния
между количественными факторами, расстояния
между номинальными признаками (
, если
и
, если
) и расстояния
между порядковыми переменными (если
и
- номера градаций., то
.
Наличие количественных факторов приводит к непрерывности и строгому возрастанию , а потому для непараметрических оценок плотности в пространствах разнотипных признаков справедливы теоремы 1 - 3.
Литература
1.Орлов А.И. Устойчивость в социально-экономических моделях.-М.Наука,1979.-296 с.
2.Орлов А.И. Экспертные оценки / Вопросы кибернетики. Вып.58.-М.: Научный Совет СССР по комплексной проблеме "Кибернетика", 1979.С.17-33.
3.Орлов А.И. / Тезисы докладов Четвертой международной Вильнюсской конференции по теории вероятностей и математической статистике: Том 2.-Вильнюс, Вильнюсский госуниверситет, 1985.С.278-280.
4.Орлов А.И. / Анализ нечисловой информации в социологических исследованиях.-М.Наука, 1985.С.58-92.
5.Орлов А.И. / Статистика. Вероятность. Экономика.-М.Наука,1985. С.99-107.
6.Орлов А.И. / Заводская лаборатория. 1987.Т.58. N3.С.90-91.
7.Орлов А.И. /Надежность и контроль качества. 1987.N6.С.54-59.
8.Рекомендации. Прикладная статистика. Методы обработки данных. Основные требования и характеристики.- М.:ВНИИС,1987.-64 с.
9.Кривцов В.С., Фомин В.Н., Орлов А.И. / Стандарты и качество. 1988.N3.С.32-36.
11.Колмогоров А.Н. Статистический приемочный контроль при допустимом числе дефектных изделий, равном нулю. - Л.: ДНТП, 1951. - 22 с.
12. Гнеденко Б.В. Математика и контроль качества продукции.- М.: Знание, 1978. - 64 с.
13. Беляев Ю.К. Вероятностные методы выборочного контроля.-М.: Наука, 1975. - 408 с.
14. Лумельский Я.П. Статистические оценки результатов контроля качества. - М.: Из-во стандартов, 1979. - 200 с.
15. Орлов А.И. Современные проблемы кибернетики: Прикладная статистика. - М.: Знание, 1981. с 3-14.
16. Статистические методы анализа экспертных оценок / Ученые записки по статистике, т. 29, -М.: Наука, 1977-384 с. 17.
17.Экспертные оценки в системных исследованиях / Сборник трудов. - Вып. 4. - М.: ВНИИСИ, 1970 - 120 с.
18. Экспертные оценки / Вопросы кибернетики. - Вып. 58. - М.: Научный Совет АН СССР по комплексной проблеме / "Кибернетика". 1979. - 200 с.
Похожие работы
-
Обработка результатов многократных измерений
ОБРАБОТКА РЕЗУЛЬТАТОВ МНОГОКРАТНЫХ ИЗМЕРЕНИЙ РЕФЕРАТ по дисциплине «Метрология, стандартизация и сертификация» СОДЕРЖАНИЕ Введение ………………………………………………………………стр.3-4
-
Репрезентативная теория измерений и её применения
РЕПРЕЗЕНТАТИВНАЯ ТЕОРИЯ ИЗМЕРЕНИЙ И ЕЕ ПРИМЕНЕНИЯ Репрезентативная теория измерений (РТИ) согласно принятой в обзоре [1] классификации научных направлений является одной из составных частей статистики объектов нечисловой природы. Основные понятия этой теории и некоторые ее применения рассматривались в обзорах [1,2], в которых приведено также большое количество ссылок на публикации по этой тематике.
-
Законы распределения случайных процессов
Государственный комитет Российской Федерации по высшему образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ Кафедра электронной техники
-
Оценка риска для сегмента трубопроводов
Оценка частот повреждения трубопроводов. Анализ структурной надежности. Анализ эксплуатационных данных для трубопроводов.
-
Преобразование случайных процессов в безынерционной нелинейной цепи
Железновой Светланы СС0701 ЛАБОРАТОРНАЯ РАБОТА № 13 «Преобразование случайных процессов в безынерционной нелинейной цепи» Цель работы: изучить теорию преобразования статистических характеристик стационарных случайных процессов в безынерционной нелинейной цепи и подтвердить ее основные положения результатами , полученными в ходе машинного эксперимента, где нелинейным элементом является двухсторонний симметричный ограничитель.
-
Импорт таблиц EXCEL в текстовый документ WORD
Вопрос 12. Импорт таблиц EXCEL в текстовый документ WORD. Microsoft Excel – мощная программа для работы с электронными таблицами, являющаяся, также как и Word, частью пакета Microsoft Office. Обладая достаточно широкими возможностями и высокой степенью интеграции с другими приложениями Office и Windows вообще, Excel стала наиболее популярной программой среди людей, постоянно имеющих дело с огромными массивами чисел.
-
Паспортизация вида - важнейшая стадия введения его в культуру
Теоретические и практические основы поддержания в неволе искусственно созданных популяций диких животных разработаны совершенно недостаточно и основная причина этого - слабое знание тех сторон биологии, от которых зависит успех содержания.
-
Статистические методы контроля качества
Статистический приемочный контроль качества продукции как основной метод контроля поступающих потребителю сырья, материалов и готовых изделий. Виды планов статистического контроля партии продукции по альтернативному признаку, основные требования к ним.
-
Анализ качества САУ при случайных воздействиях и их оптимизация
Оценка качества систем при детерминированных воздействиях, расчет ошибок с САУ при случайных воздействиях. Определение суммарной спектральной плотности ошибки, средней квадратичной ошибки. Статистическая оптимизация автоматических систем управления.
-
Случайные процессы в статической динамике
Динамика процесса управления в статической схеме, основные понятия теории вероятности, функция распределения, плотность вероятности, законы распределения. Числовые характеристики случайных величин. Случайные процессы и их статистические характеристики.