Название: Анализ САУ с помощью MATLAB и SIMULINK
Вид работы: реферат
Рубрика: Промышленность и производство
Размер файла: 47.37 Kb
Скачать файл: referat.me-304645.docx
Краткое описание работы: Построение временных характеристик с помощью пакета Control System В качестве примера выберем апериодическое звено первого порядка Для построения временных характеристик с помощью пакета Control System используются функции step и impulse.
Анализ САУ с помощью MATLAB и SIMULINK
Анализ САУ с помощью MATLAB и SIMULINK
-Построение временных характеристик с помощью пакета Control System
В качестве примера выберем апериодическое звено первого порядка
Для построения временных характеристик с помощью пакета Control System используются функции step иimpulse .
Последовательность действий следующая:
1) Задается описание системы:
- в виде передаточной функции с помощью функции tf :
>> sys = tf ([10], [2 1])
Transfer function:
10
(2 s + 1)
Параметрами функции tf являются вектора коэффициентов числителя и знаменателя.
- в виде полюсов, нулей и коэффициента передачи передаточной функции с помощью функции zpk :
>> sys = zpk ([ ], [-0.5], 5)
Zero/pole/gain:
5
( s + 0.5)
Параметрами функции zpk являются вектора нулей, полюсов и коэффициент передачи.
- в пространстве состояний с помощью функции ss :
>> sys = ss ([-0.5], [2], [2.5], [0])
Параметрами функции ss являются матрицы состояния системы A, B, C, D.
2) Строится соответствующая временная характеристика:
- переходная – с помощью функции step :
>> step ( sys )
- импульсная (весовая) – с помощью функции impulse :
>> impulse ( sys )
-Построение переходной характеристики с помощью SIMULINK
Для определения переходной характеристики САУ необходимо в SIMULINK построить модель системы, к входу подключить блок единичного скачка Step , а к выходу – блок осциллографа Scope . При анализе параметров переходного процесса необходимо учитывать, что по умолчанию в блоке Step время скачка – 1 с , а не 0 с .
Импульсную характеристику нельзя получить с помощью SIMULINK, так как блок, формирующий δ-функцию, отсутствует, а его моделирование путем дифференцирования единичного скачка дает большую погрешность.
-Построение частотных характеристик САУ с помощью
пакета Control System
Исходными данными для построения является любое описание системы, применяемые в MATLAB:
- передаточная функция:
>> sys = tf ([10], [2 1])
Transfer function:
10
(2 s + 1)
- полюсы, нули и коэффициент передачи передаточной функции:
>> sys = zpk ([ ], [-0.5], 5)
Zero/pole/gain:
5
( s + 0.5)
- описание в пространстве состояния:
>> sys = ss ([-0.5], [2], [2.5], [0])
- описание в виде модели SIMULINK.
Логарифмическая амплитудная и фазовая частотные характеристики строятся в Control System с помощью функции bode:
>> bode ( sys)
В качестве параметра задается имя описания системы (передаточной функции). При этом диапазон частот для построения графиков выбирается автоматически. Если выбранный диапазон частот не удовлетворяет поставленным требованиям, его можно задать (0.01…1000 Гц):
>> bode ( sys, (0.01 1000))
Амплитудно-фазовая частотная характеристика (АФЧХ) строится с помощью функции nyquist:
>> nyquist ( sys)
или, для требуемого диапазона частот
>> nyquist ( sys, (0.01 1000))
Следует отметить, что АФЧХ строится как для положительных, так и для отрицательных частот.
-Преобразование модели SIMULINK в модель Control System MATLAB
Модель в виде структурной схемы в SIMULINK является более простым и наглядным представлением системы, чем в виде передаточных функций в Control System . В тоже время Control System представляет широкие возможности по анализу САУ. Поэтому часто возникает задача преобразования структурной схемы SIMULINK в модель Control System . Рассмотрим алгоритм такого преобразования.
1) Создание структурной схемы в SIMULINK.Рекомендуется сначала создать схему для моделирования, затем преобразовать ее в схему для анализа. Для этого необходимо отключить задающее воздействие, к входу системы подключить входной порт, а к выходу – выходной порт (блоки In ; Out ); разорвать главную обратную связь при анализе устойчивости.
![]() |
Пример исходной и преобразованной системы приведен на рис. 4.2, рис. 4.3.
Рис. 4.2. Исходная модель
|
Рис. 4.3. Преобразованная модель
2) Извлечение информации из модели :
>> [A,B,C,D ] = linmod (‘untitled’)
A =
-0.5000
B =
1
C =
5
D =
0
С использованием функции linmod получается описание модели в пространстве состояний с помощью матриц состояния A , B , C , D . В качестве параметра функции linmod указывается имя модели (оно указано в заголовке окна модели).
3) Преобразование матриц состояния в модель Control System :
<< sys = ss (A,B,C,D )
a =
x1
x1 -0.5
b =
u1
x1 1
c =
x1
y1 5
d =
u1
y1 0
Continuous – time mode1.
Параметрами функции ss являются матрицы состояния; sys – имя получаемой модели.
Полученная модель может использоваться для построения временных и частотных характеристик динамических системы:
<< step ( sys ) ;grid (grid – отображение сетки графика);
<< impulse(sys) ; grid
<< bode(sys) ; grid
<< nyquist(sys) ; grid
Литература
1. Дьяконов В., Круглов В. MATLAB. Анализ, идентификация и моделирование систем. Специальный справочник. – СПб.: Питер,
2002. – 448с.
2. Дьяконов В. П. Справочник по применение системы PCMATLAB. – М.: Наука, Физматлит, 1993.
3. Дьяконов В. П. Компьютерная математика. Теория и практика. – М.: Нолидж, 2001.
4. Дьяконов В., Новиков Ю., Рычков В. Компьютер для студента; Самоучитель. – СПб: Питер, 2000.
5. Потемкин В. Г. MATLAB. Справочное пособие. - М.: ДИАЛОГ-МИФИ, 1997.
6.Потемкин В. Г. MATLAB 5 для студентов. - М.: ДИАЛОГ-МИФИ, 1998.
7. Потемкин В. Г. Система инженерных и научных расчетов
MATLAB 5.x. Том 1 и 2..- М.: ДИАЛОГ-МИФИ, 1999.
8. Дьяконов В. П., Абраменкова И. В. MATLAB 5. Система символьной математики. – М.: Нолидж, 1999.
9. Дьяконов В. П. MATLAB. Учебный курс. – СПб: Питер, 2000.
10. Дьяконов В. П., Абраменкова И. В., Круглов В. В. MATLAB 5.3.1 с пакетами расширений. – М.: Нолидж, 2001.
Похожие работы
-
Скоростной пассажирский трубопровод
Этот скоростной пассажиро-трубопровод называется FTS (Fast Tube System). Придумали его англичане. FTS представляет собой сеть труб с проложенными в них обычными железнодорожными рельсами, а также N-ное количество станций для приёма пассажиропотока, который по этим трубам и планируется направить.
-
Синтез системы стабилизации
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное Образовательное Учреждение Высшего Профессионального Образования «Самарский государственный технический университет»
-
Проектирование электропривода подач металлорежущего станка
Федеральное агентство по образованию Северо-Западный государственный заочный Технический Университет Кафедра автоматизации производственных процессов
-
Экспериментальное определение частотных характеристик
Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Ивановский государственный энергетический университет им. В. И. Ленина»
-
Исследование частотных характеристик типовых динамических звеньев
Исследование частотных характеристик безынерционного звена. Электрическая принципиальная схема инвертирующего усилителя. Исследование апериодического звена 1-го порядка. Построение графика ЛАЧХ, частотные характеристики апериодического звена 2-го порядка.
-
Разработка динамической модели привода с фрикционным вариатором
Общие сведения о фрикционных вариаторах. Исходные данные для проектирования привода. Проектный расчет фрикционного вариатора по контактным напряжениям. Процесс разработки и реализации динамической модели. Анализ динамических процессов в объекте.
-
Система автоматического регулирования давления в ресивере
Построение структурной схемы нескорректированной системы и определение передаточных функций звеньев. Построение логарифмических амплитудно-частотных характеристик для исходной системы. Синтез и моделирование последовательного корректирующего устройства.
-
Обработка электрического сигнала с помощью фильтрации
Методы цифровой обработки сигналов и их применение в различных сферах жизни человека. Характеристика и назначение полосового фильтра, особенности его реализации в цифровой форме. Реализация модели фильтра в Simulink. Возможности тулбокса WAVELET.
-
Анализ системы автоматического регулирования угловой скорости вращения турбины
Определение передаточной функции разомкнутой, замкнутой систем и передаточной функции по ошибке. Определение запасов устойчивости. Определить параметры корректирующего звена, обеспечивающие наибольшее быстродействие при достаточном запасе устойчивости.
-
Разработка и исследование динамических характеристик САУ мехатронными модулями
Разработка конструктивной, функциональной, структурной схемы заданной системы автоматического управления (САУ). Анализ устойчивости, качества и точности САУ. Синтез корректирующего устройства и аналоговой системы. Анализ и оценка синтезированной САУ.