Название: Обобщённая задача о фальшивых монетах
Вид работы: статья
Рубрика: Математика
Размер файла: 16.7 Kb
Скачать файл: referat.me-214953.docx
Краткое описание работы: Классическую задачу об одном мешке с фальшивыми монетами можно найти во многих популярных книжках по математике. Говорят, что во время второй мировой войны англичане «сбросили» эту задачу над немецкими солдатами с целью их дезорганизации.
Обобщённая задача о фальшивых монетах
М. Мамикон
Многим читателям хорошо известна следующая классическая задача о фальшивых монетах, поражающая тем, что она разрешима:
Задача о мешке с фальшивыми монетами
Имеются N мешков и в каждом из них достаточное количество монет. Все мешки, кроме одного, содержат одинаковые «нормальные» монеты, в одном же мешке все монеты фальшивые. Известен вес нормальной монеты и известно, что фальшивая монета на 1 грамм легче нормальной. Требуется при помощи одного взвешивания на весах с разновесками обнаружить мешок с фальшивыми монетами.
Вот как решается эта задача. Мешки последовательно нумеруются и из каждого мешка берется количество монет, равное номеру этого мешка. Суммарный вес всех взятых таким образом монет будет «не дотягивать» до веса такого же количества нормальных монет (который нам известен) на количество граммов, равное номеру именно того мешка, который содержит фальшивые монеты. (Эта задача решается – правда, хитрее – и в том случае, когда вес нормальной монеты неизвестен и разновесков нет. Подумайте, как.)
Раздумывая над этой задачей, я пришёл к более удивительному выводу о том, что одним взвешиванием может быть решена и более сложная задача:
Задача о нескольких мешках с фальшивыми монетами
Пусть в условиях предыдущей задачи имеется не один, а несколько мешков с фальшивыми монетами, причём их количество неизвестно. Требуется при помощи одного взвешивания на весах с разновесками обнаружить все эти мешки.
Решив и эту задачу, я осмелился на дальнейшие усложнения. Задача оказалась разрешимой при ещё более удивительных условиях:
Задача о мешках с тяжёлыми и лёгкими монетами
Среди N мешков имеются некоторое (неизвестное) количество мешков с тяжёлыми и некоторое (тоже неизвестное) количество мешков с лёгкими монетами. Лёгкая монета на 1 г легче нормальной, а тяжёлая, наоборот, на 1 г тяжелее нормальной. Требуется при помощи одного взвешивания на весах с разновесками узнать, какие мешки содержат нормальные монеты, какие – тяжёлые, а какие – лёгкие. (Напомним, что внутри данного мешка все монеты одинакового веса и что вес нормальной монеты известен.)
Разрешимость и этой задачи вдохновила меня на дальнейшее обобщение, которое уже напрашивалось само собой. До сих пор мы фактически рассматривали задачи о двух или трёх сортах (типах) монет, поэтому естественна следующая
Задача о мешках с разносортными монетами
Пусть имеются N мешков и в каждом достаточное количество монет. Имеются монеты разных сортов, но в каждом мешке содержатся монеты только одного сорта. Количество мешков с монетами данного сорта произвольное, и нам оно неизвестно. Монеты разных сортов отличаются друг от друга по весу, причём на целое число граммов. Вес монеты каждого сорта нам известен. Требуется при помощи одного взвешивания на весах с разновесками определить, к какому сорту принадлежат монеты в каждом мешке.
Мы предлагаем читателю попробовать самостоятельно решить предыдущие задачи, прежде чем перейти к излагаемому ниже решению обобщённой задачи о фальшивых монетах.
Решение задачи о мешках с разносортными монетами
Перенумеруем последовательно мешки от 0 до N – 1. Обозначим вес самой лёгкой монеты через m. Пусть мешок под номером j содержит монеты веса m + Δj, то есть Δj определяет сорт монеты в j-м мешке. Пусть в зависимости от сорта монеты величины Δ могут принимать (целые) значения 0, 1, 2, ..., меньшие k, то есть количество сортов монет равно k.
Теперь возьмем из мешка с номером j количество монет, равное k j, то есть из первого мешка – одну монету, из второго – k, ..., из последнего – kN–1 монет. Всего взятых монет будет
N–1 | ||||
M = | ∑ | k j = 1 + k + k2 + ... + kN–1 = | kN – 1 k – 1 |
. |
j=0 |
Их суммарный вес S на весах будет равен
N–1 | N–1 | |||
S = | ∑ | (m + Δj )k j = m·M + | ∑ | Δj k j. |
j=0 | j=0 |
Поскольку всегда Δj < k, вторая сумма в правой части
N–1 | ||
Δ = | ∑ | Δj k j = Δ0 + Δ1 k + Δ2 k2 + ... + ΔN–1kN–1 |
j=0 |
представляет собой перевод числа Δ из десятичной системы счисления (в которой работают весы) в систему счисления с основанием, равным k. В этой системе Δ записывается в виде числа со следующей последовательностью цифр:
|
(*) |
Мы видим, что каждая цифра этой записи показывает сорт монеты в последовательности мешков, взятой в обратном порядке. В этом состоит суть нашего решения.
Итак, из суммарного веса S всех выбранных M монет вычитаем величину Mm – вес того же количества монет наилегчайшего сорта и оставшееся число Δ = S – Mm переводим в систему счисления с основанием k (разлагаем по степеням k, начиная со старшей). Тогда мы получим число вида (*). Его j-я цифра с конца (счёт ведётся от нуля) показывает сорт монеты Δj в мешке под номером j.
Пример
В приводимой ниже таблице указаны веса монет, содержащихся в пяти мешках. Сверху дана нумерация мешков справа налево (это и есть обратный порядок), а под мешками указаны сорта монет. Они являются искомыми.
4 | 3 | 2 | 1 | 0 | номер мешка j |
11 г | 12 г | 10 г | 12 г | 10 г | содержимое мешка m + Δj |
1 | 2 | 0 | 2 | 0 | сорт монеты Δj |
81 | 27 | 9 | 3 | 1 | количество взятых монет kj |
В этом случае k = 3 и количество взятых монет соответствует степеням тройки, как показано в последней строчке таблицы. Всего мы взяли M = 121 монету. Их общий вес на весах будет равен S = 1351 г. Вычитая величину M·m = 121·10, получим Δ = 141 г. Переводя Δ в троичную систему
Δ = 1·34 + 2·33 + 0·32 + 2·31 + 0·30,
получим число 12020, последовательность цифр которого совпадает с исходной последовательностью сортов, приведённой в таблице.
Если k = 10, то надобность перевода Δ из одной системы счисления в другую отпадает. Для случая k = 3 существует несколько отличная от нашей интерпретация решения задачи. Найти её мы предоставляем читателю.
Немного истории
Классическую задачу об одном мешке с фальшивыми монетами можно найти во многих популярных книжках по математике. Говорят, что во время второй мировой войны англичане «сбросили» эту задачу над немецкими солдатами с целью их дезорганизации и что те потеряли над её решением более 40 000 человеко-часов.
В книге Д. Бизама и Я. Герцега «Многоцветная логика» (М., «Мир», 1978 г.) рассматривается также случай двух мешков с фальшивыми монетами и приводится решение этой задачи при помощи двух взвешиваний.
Классическая задача о фальшивых монетах в последнее время нашла применение в теории кодирования и информации – для обнаружения ошибки в коде.
Похожие работы
-
Биография Н.Д.Кондратьев
Биография Согласно теории больших циклов экономической конъюнктуры Н.Кондратьева, "войны и революции возникают на почве реальных, и прежде всего экономических, условий... на почве повышения темпа и напряжения хозяйственной жизни, обострения экономической борьбы за рынки и сырье...
-
Изучение математики: как помочь ребенку
Многие дети испытывают трудности с математикой просто потому, что они ее боятся. Это происходит и со взрослыми тоже! Просто зайдите в любой форум или чат и упомяните “деление в столбик’’, а потом посмотрите, как взрослые мужчины и женщины начнут потеть.
-
Великая теорема Ферма
Вели?кая теоре?ма Ферма? (или Последняя теорема Ферма) — одна из самых популярных теорем математики. Её условие формулируется на понятийном уровне среднего общего образования, а доказательство теоремы искали многие математики более трёхсот лет. Окончательно доказана в 1995 году Эндрю Уайлсом.
-
Математика и математики в Великой Отечественной войне
Комсомольск-на-Амуре KOST РЕФЕРАТ «Математика и математики в Великой Отечественной войне» 14ШР, TimesNewRoman, 1.5ИНТ, 14Л, 2РИС, АВТ.ОГЛ. EDITED BY 12-11-2004
-
Научная деятельность Бесселя
Изучение вклада ученого в культуру и науку Восточной Пруссии. Начало научной деятельности Бесселя. Альбертина к моменту приглашения Бесселя. Бессель-астроном. Бессель-геодезист. В математике - функции Бесселя и дифференциальное уравнение.
-
Биография и достижения в математике И. Бернулли
Бернулли Иоганн БИОГРАФИЯ Бернулли Иоганн I (1667-1748). Род Бернулли ведет своё начало из Фландрии. В конце 16 в. Бернулли покинули родной Антверпен из-за религиозных гонений и после неудачной попытки осесть во Франкфурте-на-Майне оказались в Базеле. Отец Бернулли занимал в городе заметное положение, был членом городского суда и членом Большого городского совета.
-
Задачи по Математике 3
Задача 1 Решить графическим методом задачу линейного программирования А) найти область допустимых значений многоугольник решений Б) найти оптимумы целевой функции
-
Матрица
Матрицей размерности m x n называется прямоугольная таблица m x n чисел a ij , i=1,..., m, j=1,..., n: расположенных в m строках и n столбцах. Матрица называется квадратной, если m=n (n - порядок матрицы).
-
Задачи по теории вероятности 2
Работа №1 Случайные события 6 вариант. Задача 1.1. Бросают три монеты. Найти вероятность того, что только на двух монетах появится ''герб''. Исследуемое событие А – только на двух монетах из трех будет герб. У монеты две стороны, значит всего событий при бросании трех монет будет 8. В трех случаях только на двух монетах будет герб.
-
Елементи інформаційних технологій в математичному програмуванні
Завдання 1 Розв'язати графічним способом при умовах: Розв'язування Зобразимо розв’язок системи нерівностей та вектор F (1;2): Максимум функції досягається в точці А: