Название: Системы уравнений межотраслевого баланса
Вид работы: реферат
Рубрика: Математика
Размер файла: 230.25 Kb
Скачать файл: referat.me-216487.docx
Краткое описание работы: Выработать у студентов навыки построения математических моделей межотраслевого баланса в статистических случаях и оптимизации моделей в рамках межотраслевого баланса. Научиться делать выводы в рамках построения моделей.
Системы уравнений межотраслевого баланса
Лабораторную работу выполнил Сиропов Вадим Александрович
Южно-Российский государственный университет экономики и сервиса
Цели:
Выработать у студентов навыки построения математических моделей межотраслевого баланса в статистических случаях и оптимизации моделей в рамках межотраслевого баланса. Научиться делать выводы в рамках построения моделей.
Задание:
Найти объемы выпуска продукции по каждой из отраслей, предварительно обосновав сущность нестандартного решения.
Рассчитать новый план выпуска продукции, при условии, что конечный спрос на продукцию U-ой и -ой отраслей возрос соответственно на 85 и 97 единиц. Вычислить абсолютные и относительные приросты объема, выполненные по каждой из отраслей.
Скорректировать новый план, с учетом того, что отрасль не может увеличить объемы выпуска своей продукции более чем на 2 единицы.
Рассчитать матрицу полных затрат.
Исходные данные:
![]() ![]() |
0.02 0.01 0.01 0.05 0.06 |
0.03 0.05 0.02 0.01 0.01 |
0.09 0.06 0.04 0.08 0.05 |
0.06 0.06 0.05 0.04 0.05 |
0.06 0.04 0.08 0.03 0.05 |
C = | 235 194 167 209 208 |
,
,
.
0) Проверим матрицу А на продуктивность:
Матрица А является продуктивной матрицей.
(J-A) =
J – единичная матрица;
A – заданная матрица прямых затрат;
- вектор (план) выпуска продукции, подлежащей определению;
- вектор конечного спроса.
Произведем расчеты на PС, используя метод Гаусса.
;
;
;
;
;
Используя Симплекс-метод, получим:
|
2)
;
;
|
Решение:
3) Скорректировать новый план, с учетом того, что отрасль не может увеличить объем выпуска своей продукции, более чем на 2 единицы.
Подставляя значение в исходную систему уравнений, получим:
;
;
;
Решаем систему уравнений методом Гаусса:
4) Рассчитаем матрицу полных затрат.
Произведем обращение матрицы:
.
Матрица, вычисленная вручную:
Вывод: Видно, что несмотря на сходство этих матриц, полученные приближенные значения довольно грубы.
Рассчитаем деревья матрицы:
![]() |
|
![]() |
Оптимизационная модель межотраслевого баланса.
Зная запасы дополнительных ресурсов (r), нормы их затрат (D) на производство продукции каждой отрасли и цены реализации конечной продукции (p), рассчитать объемы производства продукции, обеспечивающие максимальный фонд конечного спроса. Вычислить конечный спрос и провести анализ полученного решения:
относительно оптимальности;
статуса и ценности ресурсов;
чувствительности.
Рассчитать объем производства.
Исходные данные:
D = | 0.3 0.6 0.5 |
0.6 0.6 0.9 |
0.5 0.8 0.1 |
0.9 0.4 0.8 |
1.1 0.2 0.7 |
298 467 |
= (121 164 951 254 168)
Требуется максимизировать цену конечного спроса;
=
:
, при ограничениях:
|
Решая задачу на ЭВМ, симплекс-методом, получим:
Решим соответствующую двойственную задачу:
;
;
;
Решая задачу на ЭВМ, симплекс-методом, получим:
Проведем анализ результатов:
1) Оптимальность:
|
Оптовая цена конечного спроса:
=
т.е. С1=336.67, С2=-26.1275, С3=353.8225, С4=-48.6875, С5=-41.29,
отрицательные значения говорят о том, что продукция отраслей необходимая для функционирования.
2) Статус и ценность ресурсов:
Ресурс | Остаточная переменная | Статус ресурса | Теневая цена |
1 | x6 = 21,67 | недефицитный | 0 |
2 | X7 = 88,96 | недефицитный | 0 |
3 | X8 = 0,26 | недефицитный | 0 |
Похожие работы
-
Динамические линейные модели экономики модель динамического межотраслевого баланса и модель Ней
Содержание Введение Динамические модели экономики — модели, описывающие экономику в развитии (в отличие от статических, характеризующих ее состояние в определенный момент). Модель является динамической, если, как минимум, одна ее переменная относится к периоду времени, отличному от времени, к которому отнесены другие переменные.
-
Балансовые модели
СОДЕРЖАНИЕ Балансовые модели. 2 1. Балансовый метод. Принципиальная схема межпродуктового баланса. 2 2. Экономико-математическая модель межотраслевого баланса. 8
-
Моделирование макроэкономических процессов и систем
Оглавление Введение Задание 1 Задание 2 Задание 3 Задание 4 Задание 5. Динамическая экономико-математическая модель Кейнса Экономика в форме динамической модели Кейнса как инерционное звено
-
Модель межотраслевого баланса продукции
Федеральное агентство по образованию Пермский государственный технический университет КУРСОВАЯ РАБОТА по дисциплине «Экономико-математические методы и модели»
-
Применение балансового метода для решения экономических задач
ВВЕДЕНИЕ Балансовый метод позволяет выбрать оптимальное соотношение между различными отраслями социально-экономического комплекса региона. Балансы используются для разработки рациональных внутрирегиональных и межрегиональных связей. Составление балансов (отраслевых, региональных, межрегиональных) способствует установлению уровня комплексного развития региона, определению диспропорций в его развитии.
-
по Экономико-математическим моделям
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ КАФЕДРА ЭММ Контрольная работа по дисциплине «Экономико-математическим моделям» Вариант № 1
-
по линейной алгебре
Министерство образования РФ Московский государственный университет сервиса Региональный институт сервиса Контрольная работа по математике Выполнил студент 1 курса
-
Общее представление о математическом моделировании экономических задач
1. Общее представление о математическом моделировании экономических задач 1.1. Определение экономико-математической модели Математические модели экономических задач – это совокупность средств: уравнений, комплексов математических зависимостей, знаковые логические выражения, отображающие выделенные для изучения характеристики объекта, реальные взаимосвязи и зависимости экономических показателей.
-
Математические модели в экономике
Факультет дистанционного обучения Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Кафедра экономики Контрольная работа № 1
-
Аналитическая геометрия в решении экономических задач
Расчет эффективности ведения многоотраслевого хозяйства, отображение связей между отраслями в таблицах балансового анализа. Построение линейной математической модели экономического процесса, приводящей к понятию собственного вектора и значения матрицы.