Referat.me

Название: Все формулы по математике в школе

Вид работы: шпаргалка

Рубрика: Математика

Размер файла: 27.03 Kb

Скачать файл: referat.me-216677.docx

Краткое описание работы: Шпаргалка по школьной математике.

Все формулы по математике в школе

Формулы сокр. умножения и разложения на множители :

(a±b)?=a?±2ab+b?

(a±b)?=a?±3a?b+3ab?±b?

a?-b?=(a+b)(a-b)

a?±b?=(a±b)(a?∓ab+b?),

(a+b)?=a?+b?+3ab(a+b)

(a-b)?=a?-b?-3ab(a-b)

xn -an =(x-a)(xn-1 +axn-2 +a?xn-3 +...+an-1 )

ax?+bx+c=a(x-x1 )(x-x2 )

где x1 и x2 — корни уравнения

ax?+bx+c=0

Степени и корни :

ap ·ag = ap+g

ap :ag =a p-g

(ap )g =a pg

ap /bp = (a/b)p

ap ×bp = abp

a0 =1; a1 =a

a-p = 1/a

p Öa =b => bp =a

p Öap Öb = p Öab

Öa ; a ? 0

____

/ __ _

p Ög Öa = pg Öa

___ __

pk Öagk = p Öag

p ____

/ a p Öa

/ ¾¾ = ¾¾¾¾

Ö b p Öb

a 1/p = p Öa

p Öag = ag/ p

Квадратное уравнение

ax?+bx+c=0; (a¹0)

x1,2 = (-b±ÖD)/2a; D=b? -4ac

D>0® x1 ¹x2 ;D=0® x1 =x2

D<0, корней нет.

Теорема Виета:

x1 +x2 = -b/a

x1 × x2 = c/a

Приведенное кв. Уравнение:

x? + px+q =0

x1 +x2 = -p

x1 ×x2 = q

Если p=2k (p-четн.)

и x?+2kx+q=0, то x1,2 = -k±Ö(k?-q)

Нахождение длинны отр-ка

по его координатам

Ö((x2 -x1 )?-(y2 -y1 )?)

Логарифмы:

loga x = b => ab = x; a>0,a¹0

a loga x = x, loga a =1; loga 1 = 0

loga x = b; x = ab

loga b = 1/(log b a)

loga xy = loga x + loga y

loga x/y = loga x - loga y

loga xk =k loga x (x >0)

loga k x =1/k loga x

loga x = (logc x)/( logc a); c>0,c¹1

logb x = (loga x)/(loga b)

Прогрессии

Арифметическая

an = a1 +d(n-1)

Sn = ((2a1 +d(n-1))/2)n

Геометрическая

bn = bn-1 × q

b2 n = bn-1 × bn+1

bn = b1 ×qn-1

Sn = b1 (1- qn )/(1-q)

S= b1 /(1-q)

Тригонометрия .

sin x = a/c

cos x = b/c

tg x = a/b=sinx/cos x

ctg x = b/a = cos x/sin x

sin (p-a) = sin a

sin (p/2 -a) = cos a

cos (p/2 -a) = sin a

cos (a + 2pk) = cos a

sin (a + 2pk) = sin a

tg (a + pk) = tg a

ctg (a + pk) = ctg a

sin?a + cos?a =1

ctg a = cosa / sina , a¹pn, nÎZ

tga× ctga = 1, a¹ (pn)/2, nÎZ

1+tg?a = 1/cos?a , a¹p(2n+1)/2

1+ ctg?a =1/sin?a , a¹pn

Формулы сложения:

sin(x+y) = sin x cos y + cos x sin y

sin (x-y) = sin x cos y - cos x sin y

cos (x+y) = cos x cos y - sin x sin y

cos (x-y) = cos x cos y + sin x sin y

tg(x+y) = (tg x + tg y)/ (1-tg x tg y )

x, y, x + y ¹p/2 + pn

tg(x-y) = (tg x - tg y)/ (1+tg x tg y)

x, y, x - y ¹p/2 + pn

Формулы двойного аргумента.

sin 2a = 2sin a cos a

cos 2a = cos?a - sin?a = 2 cos?a - 1 =

= 1-2 sin?a

tg 2a = (2 tga)/ (1-tg?a)

1+ cos a = 2 cos?a/2

1-cosa = 2 sin?a/2

tga = (2 tg (a/2))/(1-tg?(a/2))

Ф-лы половинного аргумента.

sin?a/2 = (1 - cos a)/2

cos?a/2 = (1 + cosa)/2

tg a/2 = sina/(1 + cosa ) = (1-cos a)/sin a

a¹p + 2pn, n ÎZ

Ф-лы преобразования суммы в произв.

sin x + sin y = 2 sin ((x+y)/2) cos ((x-y)/2)

sin x - sin y = 2 cos ((x+y)/2) sin ((x-y)/2)

cos x + cos y = 2cos (x+y)/2 cos (x-y)/2

cos x - cos y = -2sin (x+y)/2 sin (x-y)/2

sin (x+y)

tg x + tg y = —————

cos x cos y

sin (x - y)

tg x - tgy = —————

cos x cos y

Формулы преобр. произв. в сумму

sin x sin y = ?(cos (x-y) - cos (x+y))

cos x cos y = ?(cos (x-y)+ cos (x+y))

sin x cos y = ?(sin (x-y)+ sin (x+y))

Соотнош. между ф-ями

sin x = (2 tg x/2)/(1+tg2 x/2)

cos x = (1-tg2 2/x)/ (1+ tg? x/2)

sin2x = (2tgx)/(1+tg2 x)

sin?a = 1/(1+ctg?a) = tg?a/(1+tg?a)

cos?a = 1/(1+tg?a) = ctg?a / (1+ctg?a)

ctg2a = (ctg?a-1)/ 2ctga

sin3a = 3sina -4sin?a = 3cos?asina-sin?a

cos3a = 4cos?a-3 cosa=

= cos?a-3cosasin?a

tg3a = (3tga-tg?a)/(1-3tg?a)

ctg3a = (ctg?a-3ctga)/(3ctg?a-1)

sin a/2 = ±Ö((1-cosa)/2)

cos a/2 = ±Ö((1+cosa)/2)

tga/2 = ±Ö((1-cosa)/(1+cosa))=

sina/(1+cosa)=(1-cosa)/sina

ctga/2 = ±Ö((1+cosa)/(1-cosa))=

sina/(1-cosa)= (1+cosa)/sina

sin(arcsin a) = a

cos( arccos a) = a

tg ( arctg a) = a

ctg ( arcctg a) = a

arcsin (sina) = a ; aÎ [-p/2 ; p/2]

arccos(cos a) = a ; aÎ [0 ; p]

arctg (tg a) = a ; aÎ[-p/2 ; p/2]

arcctg (ctg a) = a ; aÎ [ 0 ; p]

arcsin(sin a )=

1)a - 2pk; aÎ[-p/2 +2pk;p/2+2pk]

2) (2k+1)p - a; aÎ[p/2+2pk;3p/2+2pk]

arccos (cos a ) =

1) a-2pk ; aÎ[2pk;(2k+1)p]

2) 2pk-a ; aÎ[(2k-1)p; 2pk]

arctg(tg a )= a - p k

aÎ(-p/2 +pk;p/2+pk)

arcctg(ctg a ) = a - p k

aÎ(pk; (k+1)p)

arcsina = -arcsin (-a)= p/2-arccosa =

= arctg a/Ö(1-a?)

arccosa = p-arccos(-a)=p/2-arcsin a=

= arc ctga/Ö(1-a?)

arctga =-arctg(-a) = p/2 -arcctga =

= arcsin a/Ö(1+a?)

arc ctg a = p-arc cctg(-a) =

= arc cos a/Ö(1-a?)

arctg a = arc ctg1/a =

= arcsin a/Ö(1+a?)= arccos1/Ö(1+a?)

arcsin a + arccos = p/2

arcctg a + arctga = p/2

Тригонометрические уравнения

sin x = m ; |m| ? 1

x = (-1)n arcsin m + p k , kÎ Z

sin x =1 sin x = 0

x = p/2 + 2pk x = pk

sin x = -1

x = -p/2 + 2 pk

cos x = m ; |m| ? 1

x = ± arccos m + 2 p k

cos x = 1 cos x = 0

x = 2pk x = p/2+pk

cos x = -1

x = p+ 2pk

tg x = m

x = arctg m + pk

ctg x = m

x = arcctg m +pk

sin x/2 = 2t/(1+t2 ); t - tg

cos x/2 = (1-t?)/(1+t?)

Показательные уравнения.

Неравенства: Если af(x) >(<) aа(ч)

1) a>1, то знак не меняеться.

2) a<1, то знак меняется.

Логарифмы : неравенства:

loga f(x) >(<) log a j(x)

1. a>1, то : f(x) >0

j(x)>0

f(x)>j(x)

2. 0<a<1, то: f(x) >0

j(x)>0

f(x)<j(x)

3. log f(x) j(x) = a

ОДЗ: j(x) > 0

f(x) >0

f(x ) ¹ 1

Тригонометрия:

1. Разложение на множители:

sin 2x - Ö3 cos x = 0

2sin x cos x -Ö3 cos x = 0

cos x(2 sin x - Ö3) = 0

....

2. Решения заменой ....

3.

sin? x - sin 2x + 3 cos? x =2

sin? x - 2 sin x cos x + 3 cos ? x = 2 sin? x + cos? x

Дальше пишеться если sin x = 0, то и cos x = 0,

а такое невозможно, => можно поделить на cos x

Тригонометрические нер-ва :

sin a ³ m

2 p k+ a 1 ? a ? a 2 + 2 p k

2 p k+ a 2 ? a ? ( a 1 +2 p )+ 2 p k

Пример:

I cos (p/8+x) < Ö3/2

pk+ 5p/6< p/8 +x< 7p/6 + 2pk

2pk+ 17p/24 < x< p/24+2pk;;;;

II sin a? 1/2

2pk +5p/6 ?a? 13p/6 + 2pk

cos a ³ ( ? ) m

2 p k + a 1 < a < a 2 +2 p k

2 p k+ a 2 < a < ( a 1 +2 p ) + 2 p k

cos a³ - Ö2/2

2pk+5p/4 ?a? 11p/4 +2pk

tg a ³ ( ? ) m

p k+ arctg m ? a ? arctg m + p k

ctg ³ ( ? ) m

p k+arcctg m < a < p + p k

Производная:

(xn ) = n× xn-1

(ax )’ = ax × ln a

(lg ax )’= 1/(x×ln a)

(sin x)’ = cos x

(cos x)’ = -sin x

(tg x)’ = 1/cos? x

(ctg x)’ = - 1/sin?x

(arcsin x)’ = 1/ Ö(1-x?)

(arccos x)’ = - 1/ Ö(1-x?)

(arctg x)’ = 1/ Ö(1+x?)

(arcctg x)’ = - 1/ Ö(1+x?)

Св-ва:

(u × v)’ = u’×v + u×v’

(u/v)’ = (u’v - uv’)/ v?

Уравнение касательной к граф.

y = f(x0 )+ f ’(x0 )(x-x0 )

уравнение к касательной к графику в точке x

1. Найти производную

2. Угловой коофициент k =

= производная в данной точке x

3. Подставим X0 , f(x0 ), f ‘ (x0 ), выразим х

Интегралы :

ò xn dx = xn+1 /(n+1) + c

ò ax dx = ax/ln a + c

ò ex dx = ex + c

ò cos x dx = sin x + cos

ò sin x dx = - cos x + c

ò 1/x dx = ln|x| + c

ò 1/cos? x = tg x + c

ò 1/sin? x = - ctg x + c

ò 1/Ö(1-x?) dx = arcsin x +c

ò 1/Ö(1-x?) dx = - arccos x +c

ò 1/1+ x? dx = arctg x + c

ò 1/1+ x? dx = - arcctg x + c

Площадь криволенейной трапеции.

Геометрия

Треугольники

a + b + g =180

Теорема синусов

a? = b?+c? - 2bc cos a

b? = a?+c? - 2ac cos b

c? = a? + b? - 2ab cos g

Медиана дели треуг. на два равновеликих. Медиана делит

противопол. сторону напополам.

Биссектриса - угол.

Высота падает на пр. сторону

под прямым углом.

Формула Герона :

p=?(a+b+c)

_____________

S = Öp(p-a)(p-b)(p-c)

S = ?ab sin a

Sравн . =(a?Ö3)/4

S = bh/2

S=abc/4R

S=pr

Трапеция.

S = (a+b)/2× h

Круг

S= pR?

Sсектора =(pR?a)/360

Стереометрия

Параллепипед

V=Sосн ×Р

Прямоугольный

V=abc

Пирамида

V =1/3Sосн. ×H

Sполн. = Sбок. + Sосн.

Усеченная :

H . _____

V = 3 (S1 +S2 +ÖS1 S2 )

S1 и S2 — площадиосн.

Sполн . =Sбок . +S1 +S2

Конус

V=1/3 pR?H

Sбок . =pRl

Sбок . = pR(R+1)

Усеченный

Sбок. = pl(R1 +R2 )

V=1/3pH(R1 2 +R1 R2 +R2 2 )

Призма

V=Sосн. ×H

прямая: Sбок. =Pосн. ×H

Sполн. =Sбок +2Sосн.

наклонная :

Sбок. =Pпс ×a

V = Sпс ×a, а -бок. ребро.

Pпс — периметр

Sпс — пл. перпенд. сечения

Цилиндр.

V=pR?H ; Sбок. = 2pRH

Sполн. =2pR(H+R)

Sбок. = 2pRH

Сфера и шар .

V = 4/3 pR? - шар

S = 4pR? - сфера

Шаровой сектор

V = 2/3 pR?H

H - высота сегм.

Шаровой сегмент

V=pH?(R-H/3)

S=2pRH

град 30° 45° 60° 90° 120° 135° 180°
a -p/2 -p/3 -p/4 -p/6 0 p/6 p/4 p/3 p/2 2p/3 3p/4 3p/6 p
sina -1 -Ö3/2 -Ö2/2 - ? 0 ? Ö2/2 Ö3/2 1 - ? 0
cosa 1 Ö3/2 Ö2/2 ? 0 - ? -Ö2/2 - Ö3/2 -1
tga Ï -Ö3 -1 -1/Ö3 0 1/Ö3 1 Ö3 Î -Ö3 -1 0
ctga --- Ö3 1 1/Ö3 0 -1/Ö3 -1 --
n 2 3 4 5 6 7 8 9
2 4 9 16 25 36 49 64 81
3 8 27 64 125 216 343 512 729
4 16 81 256 625 1296 2401 4096 6561
5 32 243 1024 3125 7776 16807 32768 59049
6 64 729 4096 15625 46656
7 128 2181
8 256 6561
-a p-a p+a p/2-a p/2+a 3p/2 - a 3p/2+a
sin -sina sina -sina cosa cosa -cosa -cosa
cos cosa -cosa -cosa sina -sina -sina sina
tg -tga -tga tga ctga -ctga ctga -ctga
ctg -ctga -ctga ctga tga -tga tga -tga

Похожие работы

  • Применение свойств функций для решения уравнений

    В предлагаемой статье речь идет о нестандартных приемах решения уравнений, основанных на простых и хорошо известных учащимся свойствах и характеристиках функций, таких как непрерывность, монотонность наибольшее и наименьшее значение.

  • Десять правил выживания при изучении математики

    Получите от предмета все, пока он не вытянул все силы из Вас. Да, математика является одним из тех предметов, которые основываются на предварительных знаниях. Однако многие учащиеся изучают материал только для того, чтобы сдать экзамен.

  • Основы высшей математики

    Понятие "матрица" в математике. Операция умножения (деления) матрицы любого размера на произвольное число. Операция и свойства умножения двух матриц. Транспонированная матрица – матрица, полученная из исходной матрицы с заменой строк на столбцы.

  • Шпаргалка по численным методам

    Определение точки пересечения отрезков, расстояния между точками, сортировка выбором, сортировка обменом, двоичный поиск, сортировка бинарными вставками.

  • О курсе “Элементы теории Галуа”

    Возникнув сначала внутри математики, навыки исследовательской деятельности будут перенесены в профессиональную сферу. В силу этого важно пробудить у будущего учителя математики интерес к предмету, привить ему навыки самостоятельной творческой работы.

  • Формулы по алгебре, тригонометрии, электродинамике (Шпаргалка)

    Revision 6.2 ( 19 October 2010 –             

  • Алгебра. Геометрия. Тригонометрия (шпаргалка)

    Формулы сокращенного умножения   2ав + в   в + 3ав   = (а + в) (а  = (а + в) (а  ав + в 

  • Шпаргалка по математике

    Основные формулы по алгебре, геометрии и тригонометрии.

  • Об обучении математике на подготовительных курсах

    Система занятий по математике предполагает не только подготовку к сдаче вступительного экзамена, а и подготовку к продолжению образования через обогащение индивидуального ментального опыта.

  • Тригонометрия

    Шпаргалка по тригонометрическим преобразованиям.