Referat.me

Название: Десятичные дроби

Вид работы: реферат

Рубрика: Математика

Размер файла: 19.65 Kb

Скачать файл: referat.me-216851.docx

Краткое описание работы: Тираспольская средняя школа №14 РЕФЕРАТ на тему: «Десятичные дроби» Подготовил: Тирасполь – 2004 г. Из истории десятичных и обыкновенных дробей В Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки, тончайшие, паутинки.

Десятичные дроби

Тираспольская средняя школа №14

РЕФЕРАТ

на тему:

«Десятичные дроби»

Подготовил:

Тирасполь – 2004 г.

Из истории десятичных и обыкновенных дробей

В Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.

Предшественниками десятичных дробей являлись шестидесятеричные дроби древних вавилонян. Некоторые элементы десятичной дроби встречаются в трудах многих ученых Европы в 12, 13, 14 веках.

Десятичную дробь с помощью цифр и определенных знаков попытался записать арабский математик ал-Уклисиди в X веке. Свои мысли по этому поводу он выразил в "Книге разделов об индийской арифметике".

В XV веке, в Узбекистане, вблизи города Самарканда жил математик и астроном Джемшид Гиясэддин ал-Каши (дата рождения неизвестна). Он наблюдал за движением звезд, планет и Солнца, в этой работе ему необходимы были десятичные дроби. Ал-Каши написал книгу "Ключ к арифметике" (была издана в 1424 году), в которой он показал запись дроби в одну строку числами в десятичной системе и дал правила действия с ними. Ученый пользовался несколькими способами написания дроби: то он применял вертикальную черту, то чернила черного и красного цветов. Но этот труд до европейских ученых своевременно не дошел.

Примерно в это же время математики Европы также пытались найти удобную запись десятичной дроби. В книге "Математический канон" французского математика Ф. Виета (1540-1603) десятичная дробь записана так 2 135436 - дробная часть и подчеркивалась и записывалась выше строки целой части числа.

В 1585 г., независимо от ал-Каши, фламандский ученый Симон Стевин (1548-1620) сделал важное открытие, о чем написал в своей книге "Десятая" (на французском языке "De Thiende, La Disme"). Эта маленькая работа (всего 7 страниц) содержала объяснение записи и правил действий с десятичными дробями. Он писал цифры дробного числа в одну строку с цифрами целого числа, при этом нумеруя их. Например, число 12,761 записывалось так:

1207À6Á1Â12

или число 0,3752 записывалось так:

3-7-5-2-.

Именно Стевина и считают изобретателем десятичных дробей.

Запятая в записи дробей впервые встречается в 1592г., а в 1617г. шотландский математик Джон Непер предложил отделять десятичные знаки от целого числа либо запятой, либо точкой.

Современную запись, т.е. отделение целой части запятой, предложил Кеплер (1571) - (1630 гг.).

В странах, где говорят по-английски (Англия, США, Канада и др.), и сейчас вместо запятой пишут точку, например: 2.3 и читают: два точка три.

Действия над десятичными дробями

1. Сложение (вычитание) десятичных дробей

При сложении (вычитании) десятичных дробей пользуются следующим правилом:

а) уравнивают количество знаков после запятой в обеих дробях (с помощью нулей);

б) записывают дроби друг под другом так, чтобы запятая оказалась под запятой;

в) выполняют действие, не обращая внимания на запятую;

г) подставляют в результате запятую под запятыми в данных дробях

Пример : Сложить 5,607 и 4,1

1. Уравниваем количество знаков после запятой в обеих дробях: 5,607 и 4,100

2. Записываем дроби друг под другом так, чтобы запятая оказалась под запятой:

+
5,607

4,100

3,4. Выполняем действие, не обращая внимания на запятую: 9,707

2. Умножение десятичных дробей

2.1. Умножение десятичной дроби на натуральное число

При умножении десятичных дробей на натуральное число используют правило

а) умножают дробь на это число, не обращая внимания на запятую;

б) в полученном произведении отделить запятой столько цифр справа, сколько их отделено в данной дроби

Пример : Умножить 8,607 на 5

1. Умножаем дробь на число, не обращая внимания на запятую:

х
8,607

5

43,035 .

2. В полученном произведении отделяем 3 знака справа: 43,035

2.2. Умножение десятичных дробей

а) выполняют умножение, не обращая внимания на запятые;

б) отделяют запятой столько цифр справа, сколько их стоит после запятой в обоих множителях вместе

Пример : Умножить 1,25 на 2,04

1. Записываем дроби друг под другом так, чтобы запятая оказалась под запятой:

х
1,25

2,04

+
500

250 .

2,5500 .

2. В полученном произведении отделяем 4 знака справа: 2,5500

3. Деление десятичных дробей

3.1. Деление десятичной дроби на натуральное число

При делении десятичной дроби на натуральное число запятая ставится в частном, когда заканчивают деление целой части.

Если целая часть меньше делителя, то частное начинается с нуля целых

Пример : Разделить 0,644 на 92

-
0,644 92

0 0,007

-
06

0

-
64

0

-
644

644

0

3.2. Деление десятичной дроби на десятичную дробь

а) в делимом перенести запятую вправо на столько цифр, сколько их после запятой в делителе;

б) после этого выполнить деление на натуральное число

Пример : Разделить 2,808 на 0,12

1. Переносим в числе 2,808 запятую в право на 2 знака, так как у нас в числе 0,12 два знака после запятой, и наша задача сводится к делению 280,8 на 12.


280,8 12

24 23,4

40

36

48

48

0

Получаем 280,8 : 12 = 23,4.

Литература

1. Депман И.Я. История арифметики. М.: Просвещение, 1965. 415 с.

2. Свечников А.А. Путешествие в историю математики или Как люди учились считать: Книга для тех, кто учит и учится. М.: Педагогика-Пресс, 1995. 168 с.

Похожие работы

  • Цепные дроби вокруг нас

    Обрывая цепную дробь, можно получать очень хорошие рациональные приближения к данному числу, которые называются подходящими дробями (нумерация подходящих дробей, как и неполных частных, начинается с нуля).

  • Системы счисления 2

    СИСТЕМЫ СЧИСЛЕНИЯ Система счисления - это способ записи чисел. 64, / Системы счисления Позиционные- Позиционные системы счисления - системы записи чисел, в которых значение каждой цифры числа зависит от ее положения (позиции) в последовательности цифр.

  • Вычисление обратной матрицы

    Рассмотрим квадратную матрицу Квадратная матрица называется невырожденной , или неособенной , если её определитель отличен от нуля и вырожденной , или

  • Алгебраические тождества

    Арифметические тождества, степени, дроби, логарифмы.

  • Число как основное понятие математики

    История возникновения чисел и их происхождение, а также развитие математики в разных городах.

  • Иррациональные уравнения

    Определение иррациональных уравнений. Опреднление иррациональных чисел. Методы решения иррациональных уравнений.

  • Системы счисления

    Система счисления – это способ представления чисел и соответствующие ему правила действия над числами. Разнообразные системы счисления, которые существовали ранее и существуют теперь, можно разделить на позиционные и непозиционные. Знаки, которые используются при записи чисел, называются цифрами.

  • Египетские дроби

    Египетские дроби Одним из древнейших письменных документов человечества яв­ляется папирус Райнда, датируемый ориентировочно 1600 г. до н.э. Замечательно, что это также древнейшее математическое сочинение. Древние египтяне записывали рациональные дроби как суммы чи­сел, обратных натуральным: 2/5 = 1/3 + 1/15, 6 / 7 = 1/2 + 1/3 + 1/42 и т. д.

  • Математика в древнем Китае

    Развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. Древнее математическое "Десятикнижье". Зарождение группового десятичного счёта и мультипликативного принципа фиксирования чисел в эпоху Инь. Классическая "Математика в девяти книгах".

  • Тождественные преобразования алгебраических выражений

    Алгебраическим выражением называется выражение, составленное из конечного числа букв и чисел, соединенных знаками действий сложения, вычитания, умножения, деления, возведения в целую степень и извлечение корня.