Referat.me

Название: Оценка времени жизни кольца Плутона в атмосфере планеты

Вид работы: реферат

Рубрика: Математика

Размер файла: 35.96 Kb

Скачать файл: referat.me-217215.docx

Краткое описание работы: Поставим задачу определения космогонического времени жизни спутникоподобного объекта радиуса Rr, который в начальный момент времени находится на круговой орбите на расстоянии rr от центра Плутона и движется в атмосфере планеты.

Оценка времени жизни кольца Плутона в атмосфере планеты

Н.И. Перов

Введение

На основании 60-летних наблюдений астрономов Главной астрономической обсерватории РАН периодических изменений блеска системы Плутон-Харон, происходящих с периодом 7,8 лет [3], в работе [2] , с использованием модели движения частицы в рамках дважды осреднённой ограниченной задачи трёх тел, с учётом сжатия Плутона, было сделано предположение о существовании вблизи Плутона на расстоянии 2510-2520 км гипотетического кольца, состоящего из частиц с характерным радиусом Rr. Поскольку радиус Плутона составляет RPl =1137 км [4], то естественно ожидать, что атмосфера Плутона будет ограничивать космогонический срок жизни такого кольца. Для состава атмосферы Плутона и величины давления на его поверхности получены приближённые оценки. В частности, в работе [4] утверждается, что атмосфера Плутона состоит в основном из азота, окиси углерода и примеси метана, а давление (p0) на поверхности планеты составляет всего несколько микробар при температуре (T) 35-45 K.

Поставим задачу определения космогонического времени жизни (τ) спутникоподобного объекта радиуса Rr, плотности ρr, который в начальный момент времени находится на круговой орбите на расстоянии rr от центра Плутона и движется в атмосфере планеты. Примем, что плотность атмосферы Плутона (ρ), при неизменной температуре, изменяется по экспоненциальному закону, при изменении ускорения свободного падения (g) с высотой. Вследствие торможения радиус орбиты объекта будет уменьшаться, и по истечении времени (τ) этот объект упадёт на поверхность Плутона (поверхность Плутона на 70% состоит из скальных пород и на 30% - из льда).

Основные уравнения

Известно [1], что объект, движущийся со скоростью V относительно окружающей его атмосферы, подвержен воздействию аэродинамических сил, которые можно разложить на две компоненты: сопротивление D, действующее в направлении, противоположном V, и силу в плоскости, перпендикулярной V. Выражение для D записывают в аэродинамике [1] обычно в виде

ρVVSCD , (1)

где

ρ - плотность окружающей среды,

S - характерная площадь объекта (обычно - это площадь сечения объекта плоскостью, перпендикулярной направлению движения).

В дальнейшем будем предполагать отсутствие сил в направлении, перпендикулярном движению (если бы они действовали, возникла бы компонента по направлению движения, изменяющая D и делающая изложенную ниже теорию несостоятельной).

Значение CD примем равным 2,2 в соответствии с монографией [1] , где показано, что для искусственных спутников Земли самой разнообразной формы и находящихся на различных высотах над поверхностью Земли CD (2,1 ; 2,35).

Плотность атмосферы Плутона зависит от многих факторов (расстояния Плутона от Солнца, солнечной активности, температуры дневного и ночного полушарий Плутона). Учитывая изменение ускорения свободного падения (g) с высотой (h), плотность (ρ) изотермической атмосферы Плутона представим в виде

, (2)

где μ - молярная масса (азота), RPl - радиус Плутона, - универсальная газовая постоянная, G - гравитационная постоянная, MPl - масса Плутона.

Величина V в формуле (1) в общем случае является скоростью движения объекта относительно окружающей среды (атмосферы Плутона). Если обозначить через v скорость движения объекта относительно центра масс Плутона, а через VA - скорость движения атмосферы планеты (вследствие осевого вращения Плутона с периодом PPl), то

V=v-VA (3)

С учётом возмущений от сопротивления атмосферы Плутона дифференциальное уравнение, описывающее орбитальную эволюцию частицы массы mr гипотетического кольца планеты, примет следующий вид

d2r/dt2 = - rr + D/mr (4)

В уравнении (4) второе слагаемое - ускорение, обусловленное торможением в среде - должно быть существенно меньше первого члена - гравитационного ускорения. При малых значениях величины |D/mr| скорость |v| приближённо будет совпадать со скоростью движения объекта по невозмущённой орбите

(5)

Здесь a - большая полуось орбиты частицы-спутника Плутона.

Рассматривая круговые (rr=a), экваториальные орбиты объектов (лежащие в плоскости экватора Плутона), выражая h через a и RPl,

h=a-RPl, (6)

Выражая S и mr через Rr и ρr (для сферических частиц) ,

S =πRr2; mr=Rr3ρr, (7)

От уравнений (1) - (7) (дифференцируя (5) по времени (t) и используя (4)) , перейдём к уравнению изменения большой полуоси орбиты (a) с течением времени (t) - da/dt

(8)

В уравнении (8) знак "-" соответствует одинаковым направлениям скоростей объекта и атмосферы Плутона, а знак "+" - противоположным . Для больших полуосей орбит мелких спутников Плутона, удовлетворяющих условию a<2520 км, в уравнении (8) можно пренебречь вторым членом в квадратных скобках по сравнению с первым с погрешностью в несколько процентов (при a=2520 км первое слагаемое равно 580 м/с, а второе, приближённо ~ 30 м/с). Замечая, что вблизи поверхности Плутона ускорение, возникающее вследствие торможения, может значительно превосходить гравитационное ускорение, а скорость объекта может заметно отличаться от скорости в невозмущённом движении (5) и формула (8) уже будет не применима, ограничимся интервалом больших полуосей орбит от aн =2520 км до aк=1337 км (полагаем, что рассматриваемые объекты прекращают своё существование на высоте 200 км от поверхности Плутона). Конечно, крупные (Rr>10 м) и плотные (ρr>1000 кг/м3 ) тела выпадают на поверхность планеты.

Разделяя в уравнении (8) переменные a и t, используя новую переменную ξ=1/ и интегрируя в пределах от ξн=6,299·10-4 м-1/2 до ξк=8,648·10-4 м-1/2, получим окончательную формулу для определения времени жизни τ объектов, образующих кольцо Плутона

(9)

Таким образом, при сделанных предположениях, время жизни спутникоподобных тел вблизи Плутона прямо пропорционально произведению радиусов этих тел и их плотности и обратно пропорционально давлению у поверхности планеты. Это время жизни также зависит сложным образом от других параметров, как атмосферы (μ, T), так и планеты (MPl, RPl).

ПРИМЕРЫ:

Для численных оценок определим время жизни: 1) "короткоживущих" и 2) "долгоживущих" частиц в атмосфере Плутона. Примем следующие значения параметров Плутона и его атмосферы [4]:

G=6,672·10-11 Нм2/кг2,

μ=28·10-3 кг/моль,

RPl=1137000 м,

MPl=1,27·1022 кг,

=8,31 Дж/(К·моль),

aн=2520000 м, ξн=6,299·10-4 м-1/2,

aк=1337000 м, ξк=8,648·10-4 м-1/2,

СВ=2,2.

Результаты вычислений для различных частиц и условий приведены в таблице (I - значение интеграла (9), вычисленного по методу Симпсона при 2m=200)

N

T

К

p0

Па

ρr

кг/м3

Rr

м

I

м1/2

Τ

годы

1 45 1 100 0,1 3,47·10-10 3,31·105
2 35 0,1 1000 1 2,05·10-13 1,28·1012

Из вышеизложенного следует, что время жизни крупных (Rr>10 м) и плотных (ρr>1000 кг/м 3) частиц в атмосфере Плутона превосходит на несколько порядков время жизни (τ) мелких (Rr<0,1 м) и рыхлых частиц (ρ<100 кг/м3). Это значит, что при большом возрасте (порядка 1 млрд. лет) гипотетического кольца Плутона оно должно состоять из сравнительно крупных объектов, а если это образование относительно молодое (105 лет), то не исключается наличие в нём, наряду с крупными, и мелких объектов.

Этот вывод можно будет проверить уже в первом десятилетии XXI века, если состоится первый полёт в систему Плутон-Харон (2008 г.) [http://www.seds.org/billa/tnp/Pluto.html].

Список литературы

Кинг-Хили Д. Теория орбит искусственных спутников в атмосфере. М.: Мир, 1966. 190 с.

Perov N.I. A method of localization of unknown minor bodies in multiple systems of major bodies / Proceedings of International Conference "AstroKazan-2001", September 24-29, 2001, Kazan State University: Publisher "DAC", 2001. P.253-256.

Rylkov V.P., Vityazev V.V., Dementieva A.A. Pluto: an analyses of photographic positions obtained with the Pulkovo normal astrograph in 1930-1992 / Astronomical Transactions. 1995. V. 6. P. 265-281.

Tholen D. Pluto and Charon. The University of Arizona. Tucson. Arizona. 1997.

Похожие работы

  • Меркурий

    Меркурий, строение планеты. Исследования Меркурия. Меркурий, общие сведения и физические характеристики.

  • Солнечная система

    Солнечная система состоит из Солнца, девяти планет, шестидесяти шести спутников планет, большого количества малых тел (комет и астероидов) и межпланетной среды. Внутренняя Солнечная система включает в себя Солнце, Меркурий, Венеру, Землю и Марс.

  • Плутон

    Как Плутон получил свое имя. Является ли Плутон планетой? Орбита. Физические характеристики. Спутники.

  • Орбитальные характеристики планет

    В. В. Орлёнок, доктор геолого-минералогических наук Физические условия на поверхности каждой из девяти планет всецело определяются их положением на орбите относительно Солнца. Ближайшие к светилу четыре планеты – Меркурий, Венера, Земля и Марс – имеют сравнительно небольшие массы, заметное сходство в составе слагающего их вещества и получают большое количество солнечного тепла, ощутимо влияющего на температуру поверхности планет.

  • Существует ли тринадцатая планета солнечной системы?

    Принимая массу Земли за единицу, можно приближенно представить массу всех больших планет Солнечной системы в виде геометрической прогрессии. Второй – пятый члены прогрессии нельзя отождествить с известными объектами Солнечной системы.

  • Открытие Нептуна

    Нептун - это предпоследняя планета в солнечной системе. Ее орбита пересекается с орбитой Плутона в некоторых местах. Комета Галилея еще пересекает ее орбиту, в отличии от Плутона.

  • Существует ли ... тринадцатая планета Солнечной системы!

    Оригинальная математическая гипотеза.

  • Нептун

    Нептун открыт в Берлинской обсерватории 23 сентября 1846 г. Иоганном Галле на основании предсказаний, сделанных независимо Джоном К. Адамсом в Англии и Урбеном Ж. Леверрье во Франции.

  • Облако Оорта

    В 1950 г. голландец Ян Оорт предположил, что кометы рождаются в облаке, которое окружает внутреннюю, планетную, часть Солнечной системы. Это облако - остаток той туманности, из которой путём "слипания" образовались Солнце и планеты.

  • Плутон

    Поиск Плутона начат Ловеллом, когда выяснилось, что особенности движения Урана нельзя объяснить только тяготением Нептуна. Открыт Плутон через 12 лет после смерти Ловелла в 1930 г. Клайдом Томбо, сотрудником обсерватории Ловелла.