Referat.me

Название: Поле. Примеры полей. Свойства полей. Поле рациональных чисел

Вид работы: реферат

Рубрика: Математика

Размер файла: 104.67 Kb

Скачать файл: referat.me-217827.docx

Краткое описание работы: Рассматривается определение поля, примеры и простейшие свойства полей, определения подполя, простого поля и поля рациональных чисел.

Поле. Примеры полей. Свойства полей. Поле рациональных чисел

Рассматривается определение поля, примеры и простейшие свойства полей, определения подполя, простого поля и поля рациональных чисел.

п.1. Определение поля.

Определение. Пусть - кольцо с единицей 1. Элемент из множества называется обратным в кольце , если . называется обратным к .

Примеры.

Рассмотрим кольцо целых чисел, то есть кольцо , элемент 2 необратим в этом кольце, так как , элемент 5 необратим в кольце целых чисел. - обратимые элементы в кольце целых чисел

Рассмотрим кольцо рациональных чисел , обратимыми являются все элементы кроме .

Рассмотрим кольцо действительных чисел, то есть кольцо , обратимыми являются все элементы кроме .

Определение. Поле – это кольцо , если:

- коммутативное кольцо (операция коммутативна)

- кольцо с единицей 1, единица .

Всякий ненулевой элемент кольца обратим.

Примеры полей.

- поле рациональных чисел.

- поле действительных чисел.

Это поля с бесконечным числом элементов. Рассмотрим поле с конечным числом элементов.

Поле Галуа - галуафилд. ; . Определим

операции сложения и умножения:

И - бинарные операции, - унарная

Из этой таблицы видно, что операция - коммутативна, -бинарные операции, - унарная операция, т.к. , .

п.2. Простейшие свойства поля.

Пусть - поле. Обозначение: .

Если , то .

Доказательство. Пусть , докажем, что , то есть , тогда противоречие с аксиомой поля . Если , то по аксиоме полей | , .

Если , . умножим равенство справа на , то есть .

.

Доказательство. Если , то , умножая обе части равенства на слева, .

В поле нет делителей 0.

Доказательство. Следует из свойства 3, применяя законы контрапозиции: , , значит нет делителей нуля.

Каждое поле является областью целостности.

Доказательство. Следует из определения поля и области целостности.

.

Доказательство. . Умножим обе части равенства справа на , где .

, где .

Доказательство. Выпишем правую часть равна левой части.

, где .

Доказательство. Правая часть равна левой части.

, .

Доказательство. Правая часть левая часть.

, .

Доказательство. Левая часть .

, .

Если , то .

Доказательство. Вычислим произведение то есть обратный элемент к .

, где .

Доказательство. Левая часть равна равна правой части.

- коммутативная группа, которая называется мультипликативной группой не равных 0 элементов.

Доказательство. Следует из свойств поля:

1. , так как поле.

2.

3.

4. , так как поле

Так как поле – это кольцо определённого вида, то под гомоморфизмами полей понимаются гомоморфизмы полей. Аналогично для изоморфизмов.

п.3. Подполе.

Определение. Подполем поля называется подкольцом с единицей поля , в котором всякий ненулевой элемент обратим. Всякое подполе является полем. Подполе поля , отличное от называется собственным полем.

Определение. Поле называется простым, если оно не имеет собственных подполей.

Пример. Рассмотрим поле действительных чисел, то есть поле . Для того, чтобы найти подполе надо найти подмножества замкнутые относительно операции и подмножеству. Например, поле рациональных чисел является подполем поля действительных чисел.

п.4. Поле рациональных чисел.

Алгебраическая система называется системой рациональных чисел, если:

Алгебра - это поле с единицей 1.

Множество замкнуто относительно операции и

Аксиома минимальности, если такое, что:

а)

б) , тогда .

Список литературы

Е.Е. Маренич, А.С. Маренич. Вводный курс математики. Учебно-методическое пособие. 2002

В.Е. Маренич. Журнал «Аргумент». Задачи по теории групп.

Кострикин А.И. Введение в алгебру. Ч.1 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.2 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.3 Основные структуры алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Сборник задач по алгебре. Изд. третье – М.: Физмат лит-ра, 2001

Похожие работы

  • Магнитные звёзды

    Характерной особенностью "магнитных звёзд" является гладкость и статичность их магнитных полей, в отличие от, например, Солнца, чьё магнитное поле не слишком сильно, дискретно и постоянно изменяется.

  • Электромагнитная масса кулоновского поля

    Свободное перемещение статического электрического поля в вакууме хорошо изучено. Однако свойства электромагнитной массы (ЭМ-массы), связанной с кулоновским полем, до сих пор подвергаются обсуждению.

  • Фундаментальная группа. Конечные поля

    Конечные поля Цель работы: Изучить конструкцию и простейшие свойства конечных полей. В частности, изучить на примерах конечных полей понятие степени расширения, конструкцию и однозначную определенность поля разложения, простые поля, понятие примитивного элемента, строение конечной, мультипликативной подгруппы поля.

  • Проводники в электрическом поле. Электростатический метод изображений

    Проводники в электрическом поле. Электростатический метод изображений. М.И. Векслер, Г.Г. Зегря Поле внутри проводника равно нулю, поэтому проводники геометрически ограничивают область, где должны решаться уравнения электростатики. На поверхности проводника φ = const (эквипотенциальность).

  • Теория поля и элементы векторного анализа

    Элементы математической теории скалярных и векторных полей Математическая теория поля занимается изучением его свойств, отвлекаясь от его конкретного физического смысла. Поэтому получаемое в этой теории понятие и закономерности относятся ко всем конкретным полям.

  • Потенциал поля

    Работа сил электрического поля. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.

  • Экзаменационные билеты по теоретической механике

    Билеты по разделу "Динамика".

  • Моделирование электростатического поля

    Метод моделирования электростатического поля имеет широкое применение на практике. Пользуясь этим методом, изучают сложные электростатические поля (в электростатических линзах, в электронных трубках и т.п.).

  • Вопросы к государственному экзамену по физике

    Физический факультет БГПУ (2004 год).

  • Торсионные поля или размышления биофизика

    Когда Г. Герц сто лет назад экспериментально получил искусственные электромагнитные волны, это стало вехой не только в науке и технике, но и породило принципиально новую ситуацию в окружающем пространстве Земли.