Название: Раціональні дроби та їх властивості
Вид работы: контрольная работа
Рубрика: Математика
Размер файла: 51.53 Kb
Скачать файл: referat.me-217880.docx
Краткое описание работы: м. Комсомольськ гімназія ім. В.О.Ніжніченка ПРАКТИЧНА РОБОТА на тему „Раціональні дроби та їх властивості” підготувала Шепель Ілона 2004 р. Дріб, числівник і знаменник якого є многочленами, називається
Раціональні дроби та їх властивості
м. Комсомольськ
гімназія ім. В.О.Ніжніченка
ПРАКТИЧНА РОБОТА
на тему
„Раціональні дроби та їх властивості”
підготувала
Шепель Ілона
2004 р.
Дріб, числівник і знаменник якого є многочленами, називається раціональним (алгебраїчним).
Наприклад,
;
;
;
є раціональними або алгебраїчними дробами.
Область припустимих значень (ОПЗ) алгебраїчного дробу є множина всіх числових наборів, що відповідають набору многочленів P та Q, для кожного з яких значення многочлена Q не дорівнює нулю.
Наприклад,
(ОПЗ) алебраїчного дробу є множина всіх числових наборів, відповідаючих її буковному наборові (a,b,c)
таких що
Два раціональні дроби та
тотожньо
рівні
на множині М, якщо на множині М справедлива рівність PB=QA, за умови, що многочлени Q та B не дорівнюють нулю.
Наприклад,
Справедлива тотожня рівність
для
так як для них виконується
![]() |
Основна властивість дробу
виражена тотожністю , яка справедлива за умов , де R
– цілий раціональний вираз (многочлен, одночлен або число).
Приведення раціональних дробів до спільного знаменника .
Скоротити дріб – це означає розділити числівник і знаменник дробу на спільний множник. Можливість такого скорочення обумовлена основною властивістю дробу.
Спільним знаменником декілька раціональних дробів називається цілий раціональний вираз, який ділиться на знаменник кожного дробу.
Для того, щоб декілька раціональних дробів привести до спільного знаменника, потрібно:
- Розкласти знаменник кожного дробу на множники;
- Скласти загальний знаменник, включивши в нього в якості співмножників всі множники одержаних розкладів; якщо множник є в декількох розкладах, то він береться з найбільшим показником ступеню;
- Знайти додаткові множники для кожного з дробів (для цього спільний знаменник ділять на знаменник дробу);
- Домноживши числівник і знаменник на додатковий множник, привести дроби до спільного знаменника.
Додавання і віднімання раціональних дробів.
Сума двох (любої скінченної кількості) раціональних дробів з однаковими знаменниками дорівнює дробу з тим же знаменником і з числівником, що дорівнює сумі числівників дробів-доданків:
.
Аналогічно і в випадку віднімання дробів з однаковими знаменниками:
.
Для додавання і віднімання раціональних дробів з різними знаменниками потрібно привести дроби до спільного знаменника, а потім виконати операції над дробами з однаковими знаменниками.
Наприклад
:
Спростити вираз: .
Розв”язок .
![]() |
Множення і ділення раціональних дробів .
Добуток двох (любої скінченної кількості) раціональних дробів тотожньо дорівнює дробу, числівник якого дорівнює добутку числівників, а знаменник – добутку знаменників дробів-співмножників:
.
Час тка від ділення двох раціональних дробів тотожньо дорівнює дробу, числівник якого дорівнює добутку числівника першого дробу на знаменник другого дробу, а знаменник - добутку знаменника першого дробу на числівник другого дробу:
.
Наприклад
:
Виконати множення.
Розв”язок.
.
Піднесення раціонального дробу до степеня.
Для того, щоб піднести раціональний дріб до натурального степеню n
, треба піднести до цього степеня окремо числівник і знаменник дробу. Перший вираз – числівник, другий вираз – знаменник результата. .
При піднесенні дробу до цілого від”ємного степеня використовуємо тотожність
яка справедлива при будь-яких значеннях змінних , за яких P ¹ 0, Q ¹ 0.
Перетворення раціональних виразів
Перетворення будь-якого раціонального виразу можна звести до додавання, віднімання, множення та ділення раціональних дробів, а також до піднесення дробу до натурального степеня. Будь-який раціональний вираз можна перетворити на дріб, числівник і знаменник якого – цілі раціональні вирази; в цьому, як правило, є ціль тотожніх перетворень раціональних виразів.
Наприклад :
Спростити вираз
.
Розв”язок.
О. П. З.: .
;
;
;
;
.
Література:
1. М.Я. Выгодский, „Справочник по элементарной математике”, Москва, 1949
2. В.В. Вавилов, И.И. Мельников, „Задачи по математике. Алгебра”, Москва, 1987
Похожие работы
-
Знаходження власних значеннь лінійого оператора
Міністерство освіти і науки України ФАКУЛЬТЕТ ІНФОРМАТИКИ КАФЕДРА ІНФОРМАЦІЙНИХ УПРАВЛЯЮЧИХ СИСТЕМ ТА ТЕХНОЛОГІЙ Реєстраційний №________ Дата ___________________
-
Інтегрування раціональних функцій
Пошукова робота на тему: Інтегрування раціональних функцій. Інтегрування раціональних функцій Прості раціональні дроби Неправильні раціональні дроби
-
Густина розподілу імовірностей одновимірної і багатовимірної випадкових величин
Реферат на тему: Густина (щільність) розподілу імовірностей одновимірної і багатовимірної випадкових величин” a.Густина розподілу (щільність імовірності).
-
Раціональні дроби та їх властивості
Дріб, числівник і знаменник якого є многочленами, називається раціональним (алгебраїчним). Приведення раціональних дробів до спільного знаменника. Скоротити дріб - це означає розділити числівник і знаменник дробу на спільний множник.
-
Алгебраические тождества
Арифметические тождества, степени, дроби, логарифмы.
-
Вивчення систем, еквівалентних системам з відомим типом крапок спокою
Курсова робота "Вивчення систем, еквівалентних системам з відомим типом крапок спокою" Реферат Курсова робота складається з _____ сторінок, 3-х джерел.
-
Загальні властивості неперервних функцій
Загальні властивості неперервних функцій однакові як для функцій однієї змінної, так і для функцій багатьох змінних. Теорема 3. (Вейєрштрасса). Функція
-
Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку
Реферат на тему: Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку. 1. Властивості лінійного диференціального оператору.
-
Інтегрування деяких рівнянь другого порядку шляхом пониження порядку рівняння
Пошукова робота на тему: Інтегрування деяких рівнянь другого порядку шляхом пониження порядку рівняння. План Лінійні диференціальні рівняння другого порядку (загальна теорія)
-
Теореми Ролля Лагранжа Коші Правило Лопіталя Формула Тейлора для функції однієї та двох змін
Пошукова робота на тему: Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних. План Основні теореми диференціального числення