-
Інтегральне числення
Вивчення елементарних функцій, інтеграли від яких не є елементарними функціями, тобто вони не обчислюються в скінченному вигляді або не 6еруться. Наближені методи обчислення визначених інтегралів. Дослідження невласних інтегралів та ознаки їх збіжності.
-
Історія математики Греції
Визначення поняття математики через призму іонійського раціоналізму. Основні властивості правильних багатокутників і правильних багатогранників. Загальна характеристика внеску в розвиток головних засад сучасної математики видатних давньогрецьких вчених.
-
К решению теоремы Ферма
Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
-
Канонический вид произвольных линейных преобразований
Особенности нормальной формы линейного преобразования. Изучение собственных и присоединенных векторов линейного преобразования. Выделение подпространства, в котором преобразование А имеет только одно собственное значение. Анализ инвариантных множителей.
-
Категорні властивості просторів ймовірнісних мір та гіперпросторів включення
Властивості відкритої мультикомутативності нормальних функторів, її критерії. Критерії відкритої мультикомутативності в категорії Comp для нормальних та слабко нормальних функторів. Продовження властивості відкритої мультикомутативності на категорію Tych.
-
Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго и первого порядков
Порядок и основные этапы построения квадратичных двумерных стационарных систем с заданными интегралами, условия их существования. Методика качественного исследования одной системы первого и второго класса построенных двумерных стационарных систем.
-
Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго порядка
Построение квадратичных двумерных стационарных систем с заданными интегралами. Выражение коэффициентов интегралов через коэффициенты системы, связь последних между собой тремя соотношениями. Необходимые и достаточные условия существования у системы.
-
Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков
Построение квадратичной двумерной стационарной системы, нахождение состояний равновесия, исследование бесконечно-удаленной части плоскости. Необходимые и достаточные условия существования у системы двух частных интегралов. Построение траектории в круге.
-
Квадратные уравнения и уравнения высших порядков
История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.
-
Классификации гиперболических дифференциальных уравнений в частных производных
Классификация гиперболических уравнений в общей классификации уравнений математической физики. Классификация уравнений: волновое, интегро-дифференциальные, уравнение теплопроводности. Методы решения в зависимости от видов гиперболических уравнений.
-
Классический метод математического описания и исследования многосвязных систем
Математическая модель линейной непрерывной многосвязной системы. Уравнение движения и общее решение неоднородной системы линейных дифференциальных уравнений. Сигнальный граф системы и структурная схема. Динамики САУ и определение ее характеристик.
-
Классическое определение вероятности
Достоверное событие — это событие, наступающее при данных условиях со стопроцентной вероятностью. Классическая вероятностная схема. Вероятность наступления достоверного события. Рассмотрение простейшей вероятностной модели - бросание игрального кубика.
-
Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп
Рассмотрение методов экстремальных классов (Картер, Фишер, Хоукс), и критических групп (Семенчук). Классификация наследственных насыщенных формаций F, замкнутых относительно произведения обобщенно субнормальных F-подгрупп с взаимно простыми индексами.
-
Классы конечных групп F, замкнутые относительно произведения F-подгрупп, индексы которых не делятся на некоторое простое число
Описание свойств наследственных насыщенных формаций Фиттинга (замкнутые относительно произведения F-подгрупп) Шеметкова (где минимальная не F-группа является либо группой Шмидта с ненормальной циклической силовой подгруппой, либо простого порядка).
-
Классы конечных групп F, замкнутые относительно произведения обобщенно субнормальных F-подгрупп
Изучение свойств критических групп и субнормальных подгрупп. Нахождение серии наследственных насыщенных формаций Шеметкова (минимальная не F-группа тут группа Шмидта, либо простого порядка) и Фиттинга (замкнутые относительно произведения F-подгрупп).
-
Кластерный анализ и метод горной кластеризации
Классификация методов кластеризации и их характеристика. Метод горной кластеризации в Matlab. Возможная область применения кластеризации в различных предметных областях. Математическое описание метода. Пример использования метода на реальных данных.
-
Клеточные пространства
Клеточные разбиения классических пространств. Важность для геометрии и топологии клеточного разбиения многообразий Грассмана. Гомотопические свойства клеточных пространств. Теорема о клеточной аппроксимации. Доказательство леммы о свободной точке.
-
Коллизии в рассуждениях
Анализ логических ошибок с помощью E-структур. Коллизиями E-структуры: коллизии парадокса и цикла. Основные методы анализа рассуждений. Построение графа рассуждения и применение к посылкам правила контрапозиции. Корректные и некорректные E-структуры.
-
Коллинеарность и компланарность векторов. Канонические уравнения прямой
Доказательство коллинеарности и компланарности векторов. Проведение расчета площади параллелограмма, построенного на векторах а и в, объема тетраэдра, косинуса угла, точки пресечения прямой и плоскости. Определение канонических уравнений прямой.
-
Комплексні числа
Комплексні числа як розширення множини дійсних чисел. Приклади дії над комплексними числами: додавання, віднімання та множення. Геометрична інтерпретація комплексних чисел. Тригонометрична форма запису комплексних чисел, поняття модуля і аргумента.